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Summary 

The set of equations for proton linac beam 
dynamics given by P. Lapostoi-e at the Frascati 
Conference (1965) is derived again by a more rig- 
orous method and extended to include relativistic 
effects. This is accomplished by a systematic 
classical perturbation theory using expansions 
with respect to small perturbation parameters, one 
describing the influence of the field on the free- 
particle motion, the other relativistic effects. 
This permits estimates of the accuracy. 

1. Introdilction I_ 
At the Frascati Conference P. Lapostolle 192 

gave a set of difference equations, which correct 
and extend the so-called Panofsky equations 3 des- 
cribing the phase change and energy gain along a 
linear accelerator. In this new version trans- 
verse motion too was taken into account. But the 
method used in the derivation involves a slight 
ambiguity. Here we treat the same problems in a 
different way which avoids this difficulty. In 
the course of this we develop a systematic classi- 
cal perturb_ation theory based on expansions of the 
parameter P = eEl/(msv,) (C 0.1) which character- 
izes the influence of the field on the free-parti- 
cle motion. By use of this one is able to sepa- 
rate the equations of motion into parts of diff'er- 
ent order of magnitude, each order corresponding 
to a step in solving the equations of motion by 
iterations starting from free-particle motion. 
This permits the estimation of the accuracy of the 
approximation. 

We solve the first order equations and give 
the change in energy, phase and transverse motion 
across a linac gap. We extend the treatment 
through a perturbation parameter E, = eEo/(mwc) to 
include relativistic effects and to estimate their 
influence. 

2. Homogeneous Time-Harmonic Field 

The motion of a proton in such a f'eld served 
as a simple example to study the method .t . It is 
there where the importance and usefulness of the 
perturbation parameter g 

= eE,/(mzow2) = (eE1/m)/(m dzo/dt) < 0.1 (1) 
(= impulse exerted by the field/free-particle mo- 
mentum) was found. For the estimate El 5 14 MV/m, 'U 

= 27rx 200 MHz, dz/dt * 0.5 MeV protons have been 
taken. By use of it gne may expand energy and 
phase into powers of E and compare with the gensl.al 
results given by Lapostollez,4. 

One may even get numerically an exact solu- 
tion for the energy gain AWex and compare with 1st 
order AWi (- transit time factor) and 2nd order _ 
approximations. 1 ( AW,/AWeX 5 1.01, 
*) 

On leave from: lnstitut fiir Theoretische Physik, 
Technische Hochschule, Graz, Austria. 

3. Bepresentation of the General Field 

We express the axially symmetric TM-field 
which is also symmetric with respect to the centre 
of the gap z = 0, by a Fourier integral: 

E,(Z,r,q) = (E1.h ) ~0s (YJ + cp o) 
m 

i 
azb(k z) eikzZ Jo (Yr )/Jo (ya) 

-CO 
(2) 

1 < (AW, + AW2)/AWex 
153 5 -'PO' 450. 

2 1.002 for2 = 0.1 and 
By the same method we investi- 

gated how the choice of the reference point for 
the phase and the velocity influences the accuracy 
of the approximate formulae. These come ciosest 
to exact results for reference points near the 
centre of the gap. 

where 
30 

T(r,cp) = V(r) cos (9 + m,) = 
i 

Ez(z,r,9)dz = 

-II 

= El ~0s (v’ + cp), b(0)Jo (kor)/Jo(koa) (3) 

is the voltage along the line r = const.,V(O) = V , 
V(a) = VI = Elg; a = radius of the drift tube box-% 
and: 

k = W/C 0 y(k ) = (kL - k2)1'2 = z 0 z ikr(kz) (4) 

For Er, Bo one has to replace Jo(yr) in (6) by 
- ik,Jl (v-)/y, -k, JI (v)/(v) x tg (‘P + vo) res- 
pectively. 

We require Imy > 0 . Describing gap plus 
drift tubes by a circular wave guide (radius a) 
where along a circumferential slot of the wall an 
(reasonable) electrical field: 

-co 

E;(z) =E, 
z 

-T Bs cos (2nsz/g) / zI 5 g/2 (5) 

s =-m 

CBO = 1, BqS = Bs) is applied then: 

-CD 

b(kz) = 2 T BS(-1)'sin :kZg/2) (kz 
-1 

L 
+ 2os;'g) , 

Bs ..+ s-~ (6) 

In most cases we shail not use (5) and (6) ex- 
plicitly, they serve mainly to obtain an idea 
about the analytic properties of the amplitude 
b(kz) s The integrals are all single-valued. 
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Transit Time Factor: We define it as: 
m 

v(O,yP) T(kZs r) - 
i 

EZ (2, r, w) co3 (kZz) dz (7) 

-Co 

By the use of E z in (2) it turns out: 

T(ka,r) = To(kZ) Io(krr) (8) 

To(kZ) = b(kz) Jo ( koa)/[gIo(kra) 1 (9) 

For a homogeneous field along the slot (Bs = 0, 
3 f oj it is: 

To(kZ) = [sin (kz d2)/(kZd2) 1 x iJo(koa)/Io(koa) 1 

(10) 
but Jo(koa) 2 1 in moat cases. With (9) we may 
write (2): 

m 

EZ = (Vo/2n)cosh+lp ) o /" To(kZ)Io(krr) cos (k&k, 

-co 

(11) 

For E and B. insert k,Il(krr)/kr, -k, Ij(krr)/ 
(ck,)rtg(++ z,) instead of Io(krr). The symbols In 
are the modified Bessel functions. Equation (11) 
agrees with the usual definition1,2. 

S-coefficient: re define: m 

?(O,cp) S(ks,r) = 2 EZ(z,r,cp) sin (kaz) dz (12) 

0 

However, ;(k,,r) does not factorife2as T in (8), at 
variance with earlier assumptions 9 . Employing (6) 
in Es(z,r,cp) one gets the formula stated in 
Table III. Only an approximate expression of S for 
homogeneous field has been given before5. 

4. Non-relativistic Motion 

The Perturbation Equations. It will be shown later 
that the influence of the magnetic field is of the 
same magnitude as other relativistic contributions 
and both are small for low energy. Therefore, only 
the electrical field will be included here in the 
equations of motion, They are (dots denote deriva- 
tions with respect to phase cp = wt): 

k'i = (?/2n)cos (~+~,) 
i 

dksb (kZ)Jo(yr)e 
iksz 

/Jo ha) 

(13) 

and similarly for k? by the substitutions described 
after (4). The path C coincides with the real ks- 
axis, except it is indented upwards (downwards) at 
k, = -k(+k) for later use. The data are: 

q~=o:z=O ;=;lo=k -1 r=r I=; 
0 0 

(14) 

Inserting the perturbation series: 

r = r(O)+E r(l)+ . . . e = z(“)+B z(l)+ . . . (15) 

into (IS), expanding in powers of E' and comparing 
equal powers of P gives a set of equations: 

-0 
E : 

E : 

E2 : 

$4 = 0 ,b) = 0 (46-j 

2,,k’i(‘) = /” &$(kZ) ei*“z(o)Jo(yr(o)/ 
C 

J,,(ra) ~0s (‘P+ vo) 

2ak’ic2) = 
i 

dksb(k,)(yJ;(yr b))$) 

+ ~,~Jo~~r~~~~~~'~~eikzz~o~ 
~0s tv+'~,) (18) 

The radial equations have been omitted. Equations 
(16) belong to the motion of a free particle. 
Equations (17) and (18) give the first, and second 
iteration, respectively. The kind of separation 
achieved renders the assumption of the series (15) 
reasonable. It would be ultimately justifie 
o e proved that the order of magnitude of r 
,?d 

9' iind 4 
does not increase with ascending n. This has 

been shown up to n = 2. 

When putting 

r(O) = Z 'p + r 
0 0 

into (18) one has to expand with respect to ;o, be- 
cause otherwise one cannot integrate with respect 
to 'p. Throughout we drop terms non-linear in go. 
After we have integrated once or twice with respect 
to [p, we evaluate with respect to k by Cauchy's 
residue theorem. For 'P = kL > k$2 79 = -kL< kg/2) 
(L = distance of the point of observation from the 
centre s = 0) one closes the path C by a semi- 
circle in the upper (lower) plane. Jo(ya) yields 
simple poles at k, = t inp, the integrations with 
regard to 'p poles of various orders at k, = 2 k. 
The former yield terms proportional to exp(-nol). 
In general one considers only L + m and then sole- 
ly the contributions due to the poles at + k re- 
main. These correspond to the singular behaviour 
of the Dirichlet-Integral in Refs. 1,2 . If 
I'pI < kg/2 as for example, in the calculation of 
the S-coefficient, then one has to indent the path 
C at k, = as/g (8 = 0, +1,+2, . ..) and to decom- 
pose sin (k&2) in b(ks) into the exponentials. 
We may treat the integrals arising as above taking 
into account the simple poles at k, = 2as/g which 
yield the first sum in S(k,,r)g Table III. 

Crossing the whole ga2: The main formulae. and re- 
sults for L + m up to 1st order in E andro are 
exhibited in Table I. The longitudinal quantities 
completely agree withthose given earlier1s2, but 
not the transversal ones; p artly, because here the 
magnetic field is not included, partly due to some 
reasons intrinsic to the method employed in Ref. 2 
which not yet have become entirely clear. In 
Table II an example is given for the formulae one 
finds for finite L. We choose the gain of energy 
between z = -L and s = +L. The series are not so 

PAC 1967



SCHNIZER: REVISED LINAC BEAM DYNAMICS EQUATIONS 559 

frightening, the exponential3 contained in each 
term decreasing rather rapidly. 

First Half of the Gat: The energy gain and the 
phase jump A[p, may be expressed by the Transit 
Time Factor T and the S-coefficient. In the deri- 
vation one partly uses Cauchy's residue theorem, 
partly transformations of integrals, Results for 
L + m are shown in Table III. They are in concor- 
dance with Ref. 2, apart from the impossibility of 
factoring S(k,r) f SoIo(krr). It does not seem 
to be possible to express transverse motion by the 
S-coefficient defined in (12). 

Second Order Contributions: So far we did not suc- 

ceed in evaluating (1s 
m3& f~~~es~~~~~~,a~lI(b~~%a;!:i~~:~~::k 

expressions treated in the usual m nner. 
ing formulae let one hope that r c28 and ~87 zzH8- 

23 
bout the same order of magnitude as r(l) and 

80 that the power3 of g in front of all terms 

in (15) really determine the magnitude. 

5. Relativistic Motion 

When treating the motion relativistically, the 
effects of the mass variation are of the same 

order of magnitude a3 those due to the magnetic 
field. It is possible to include the former too in 
a perturbation treatment. Integrating once the 
equations of motion we have (m = rest mass): 

s (1-P 
2 -l/2 

1 = co (l-po)-“2 

‘p 

+ (e/(nw)) dq (2+2x;) 
i 

(20) 
6 

Squaring and solving the left side for p, we form 
thereafter: 

(1 -p2)'/' = (1-(i$)'i2 [I + 2E,(l-$)1'2 

z/E,) + (Jo, t, +E )' + E',... 
l/2 

'i I 
(21) 

E = 3.6 x IO -3 by the use of (1). Multiplying 
($0) by (21) we arrive at an equation t = . . . The _ 
right-hand side is first expanded into powers of 
E then the series (15) are introduced and we de- 
vz;op in powers of I?. There are now lots of terms, 
each accompagnied by a Esrn . However, the order 
of magnitude of relativistic contributions is not 
determined by Ec, but by l?p2 as clearly revealed 
in the results. Thus, it depends on PO, which 
terms are relatively great and which can be neglec- 
ted. 'r'ig. 1 shows the relative magnitude of the 
leading power8 in E and of &'2 in dependence on ,6 
and on energy. At 0.5 MeV the second iteration of 
the electric field (- E2) seems to contribute by 
about 10% while relativistic quantities are ne- 
gligible. For 50 MeV the situation has completely 
reversed. All terms with the exception of the 

2 l/2 energy gain contain at least a factor (l-PO) . 

I i/i ELectric field 1” Ordcl 

N f. Zndorder 
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Fig. 1 Relative magnitude of parameters 

The integrals are evaluated as in Section 4, 
retaining only 1st order terms ing, E, and to. In 
deriving the energy gain, one starts from the usual 
relativistic expression for the energy gain, uses 
(21) and ends up with: 

W=e 
i 

"(zoEz + c,E,) 

where r(O) and 8(O) have to be inserted for r and 
8 in the fields, The effect of the magnetic field 
vanishes to lowest order. Results are compiled in 
Table IV. But we believe that in the expression 
(w+ - W, ), the term in brackets coming from GoEr, 
should be dropped as being of the order of vz, 
though this is not clearly visible. Otherwise 
(w+ - W-), would not go over into (W+ - W-) for 
small8. 

Conclusions 

'The formulae given in this paper and derived 
3y first order perturbation theory seem to be suf- 
ficient (for say 3-4?: ) to treat beam dynamics in 
a linac gap as long as space charge effects and 
radiation losses can be neglected, for any Energy 
of the protons greater than 5 MeV. At lower ener- 
gies the 2nd order effects becont important, at 
0.5 MeV they could rise to 12% ; unfortunately 
there exist at present no expressions for these. 
Numerical investigations in simple cases show that, 
as far as energy gain is concerned, 1st order re- 
sults are as accurate as 17; even at 0.5 ?.IeV. But 
energy is stationary, while the other q.dantities 
are not. 
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suggestion of this topic and for many helpful dis- 
cussions. 3. W.H.K. Panofsky, UCRL- 1216. 

References 4. B. Schnizer, CERN Int.Rep. ISR-JOO/LIN/66-36. 

I. A. Carte, P.M. Lapostolle, M. Prome, Proc. 5th 5. A. Carne and P.M. Lapostolle, Proc. 1966 
Int.Conf. High Enerc Act. Frascati, 1965, Int.Lin.Acc.Conf., Los Alemos, p. 201-204. 
p. 656- 662. 

PAC 1967



SCHNIZER: REVISED LINAC BEAM DYNAMICS EQUATIONS 561 

Table I. Non-relativistic change of enerm, p- --..- ha.z.ze. transversal velocity and position aoross a gap. 

w+ -W= = eV 0 To1o coacp + eVo d/dk(TokrI,) r' since 

'p+ - cp-= cp(kL) - cp(-kL) - Li"(kL) + Li-'(-kL) = ak d/dk(ToIo) sincp - ak d2/dk2(TokrI,)r' cosrp 

r' - r'= = + - -Q TokI,/k r' cos 'p r sincp + a d/dk(Tok I;) 

r - + r-= r(kL) - I&(-kL) - kL(i(kL) + ?(-kL)) = -a d/dk(TokI,/kr) cosp - a d2/dk2(Tok I;) r' since 

Table II. Non-relativistic energy change between finite observation points. 

w(u) - W(-kI,) = m2ioE (i(')(kL) - ;(I)(-kL)$ = W+ - W-+ eE,/a2 7 J,(j,r/a) [Bs(kL) - Bp(-kL)l 
L-i 

P 

-eE,r'/a' 
c 

jpJ,(jpr/a) [LBp(kL) + LBP(-kL) - Cp(kL) + Cp(-kL)l 

P 

Bp(ikL) = b(iqp) e -npL jp [ksin(voLkL) T np sin(rporkL)l/[~,(jp)'lp(~p" + k2)l 

Cp(*kL) = b(inp) e-nPL jp [(ni - k2)cos ('Q,*kL) + 2npksin(~o+-kL)l/[J,(j~)~~(~~ + k2)21 

b(ivp) = 2g2v, sinh (qpB;/2) 
c 

Bs(-l)s(n;g2 + (~IM)~)-' 
r)P 

= (jf/a2 - kE)li2 

3 
Table III. The S-coefficient. Change of energy and phase in the first half of a RaE. - --.-- --- 

S(ks,r) = To(ks) ctg(ksd2) Io(krr) - 

,-7l,& 
- Jo(koa) 

L- 
2 r B gks 

Io(r[('&s/g)2- kzl”2) Uz8 y Jo(jpr/a) 

L-J 
3 

' (BTs)~- (gks):! JC Io(a[(2vs/g)2-k~11'2) + 7“ b 
x-- x 

P 
J,(j,,) 2 

BP f kz 

3 

Ag1 = q(‘)(o) - ,p(‘)(&) - L/i(‘)(&) = Sk [z(‘)(-kL) - kL ;(‘)(-k# 

= (cp, - cpJ/2 - ak/2 [ds/dk cosq~ + d2/dk2(aS/aro) r' sin91 

Ar, = (W+ - w-)/2 + eVo/2 [ S sin 'p - d/dk (as/ar,) r' aincpl 

Table IV. Relativistic change of enera and_ehase. transversal velocity and phase across a gae. ___-,_ _ -- _.--- I_ n -*-_ .- -.. 

w+ - "Jr = (w+ - WJ [ 0 - eV Tok 1,/k, r' sincpl 
I 

(9+ - qp_)r(l - pz)-'/' = ('p, - q-)(1 - kf/k2) + ak kE/k2 Tok 1,/k, r coscp 

(r: - r:),(l - PO) -I/* = ( r: - Q(' - k*/k') + a kt/k2 To (I!, - IO) r' coscp 

(r - + r ) -r (1 - j32)-1'2 
0 

= (r+ - r-)(1 - k%/k2) + a kE/k2 [d/dk(ToI,) - ToI,/k - d/dk(ToIo)] r' sincp 

Common to all tables: I--.-L... . 

a = eVo/(2W) k:/k2 = (d./dt)~/c2 = pt 

W = m/2 (&/at): = m/2 i: w* m = rest ma35 1 - kf/k2 = kyk2 = ' -Pf 

The argument k = w/(dz/dt)o of To(k) , kr(k)ro of In(krr) and k,ro of S(k,ro) and the subscript o 

of 'PO, r. and rl, = dr,/de have been dropped. s = - m ., -I, 0, I . . + m ; p = I, 2, . . .,, 
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