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Summary -____ 

An analytical investigation has been made of 

the motion of a charged particle in an axially 

symmetric steady magnetic field. For a given 

momentum, expressions for the shape of the 

equilibrium orbit and betatron oscillation fre- 

quencies have been derived in terms of the field 

index k, the spiral parameter K, and the set of 

field coefficients gnm. These algebraic results 

have been programmed for the IBM704 computer. 

For a 500 MeV fixed field alternating gradient 

(FFAG) synchrotron designed as an injector ,l 

computations yield radial and vertical tunes 

averaged with respect to momentum of vr = 3. 23, 

2.37 with variations of Invr 1 5 0.000 1, 

&;I _ c= 0.0004 depending on the exact momen- 

tum. For comparison, Runge-Kutta evaluations 

which require a factor of six longer computing 

times yield average tunes of vr = 3.22 and 

Vz = 2.49. 

Introduction -- 

The structure of radial straight sections in a 

spiral sector FFAG accelerator has not been 

treated analytically in sufficient detail to yield 

quantitative conclusions starting from a set of 

general magnetic field coefficients. For the 

complicate field, the method of its expansion is 

more important than the expansion of the equa- 

tions of motion. It is found that by assuming the 

solution of an equilibrium orbit in a median plane 

to be a non-linear form 

I 

2lT 

R = Rq exp[r(0)] with r(e) de = 0, (1) 
0 

instead of the Linear form 2 

R = Rav (1 t r) , 

the field can be systematically expanded around 

R and have convergent series. The number of 

be?atron oscillations per revolution vr and vz for 

radial and vertical motion varies periodically 

with particle momentum. Their deviations from 

- 
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constant parts are expressed in terms of the 

field coefficients. The reason that Cole and 

Morton3 did not obtain the deviations and con- 

cluded that or and vz were independent of mo- 

mentum is explained. 

Form of the Magnetic Field 

Let N and M be the number of spiral sectors 

and radial straight sections, respectively. On 

the median plane, the field in cylindrical coordi- 

nates is taken to be 

H, ~~~~~~~ gnmexp[n(K In c - NO) +imMd,(2i 

n. m 

where k is the field index; K, the spiral param- 

eter; R , an arbitrary reference radius; and 

g , tRe set of field coefficients. The conver- 

gg:e of the series requires that gnm approaches 

zero as InI or (ml approaches infinity. Hz is 

real. This reality condition Leads to 

g nm = g;, and g 
? -m n, -m 

Let 

g = nm I 
anm - dnm) -i(bnm + 

g n, -m = anm + d,,) fijbnm 
L 

C 
nm ’ I 

- c 
nm * I 

The field can be expressed as 

- 
mz=O - 

tb nm cos N0 sin mM8 

+c sin 
nm 

K In $ - 

0 

td 
nm 

where 

f = 4, f 
nm om 

= f = 2, and foe = I. 
no 

(3) 
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Eauation of Motion 

For the motion of a charged particle in a 

magnetostatic field, the Euler-Lagrange equa 

tions give 

=e RH I - Z’H 
Pc 2 e ’ I 

d 2’ 

de 
=: R’H 

\i 
2 

+R2+ Z’ 
2 PC I e 

R’ 

where 

dR 
R’ =E, Zl=dz. 

de 

RH 
1‘ ’ i 

(4) 

(5) 

The magnetic field in a circular accelerator 

is so designed that there exists a symmetry 

plane (median plane), and everywhere on this 

plane the field H is perpendicular to the plane. 
The field nearbyZthe plane can be adequately 

specified on the plane. From DxH = 0, the fields 

off the plane H and H are 
z r 

aHe 8H 

H@r_l_ az Z=;*Z, 

aH aH 
H -*Z=$Z 

r 

Then Eqs. (4) and (5) become 

ii /e - dR* = GRHZ (@ 

Let the solution for an equilibrium orbit in 

Eq. (6) be of the form in Eq. (1). It will turn out 

that Rq fs very nearly the average radius of the 

equilibrium orbit. Let a dimensionless field be 

H 
h=-$ 

0 

d 

ds 
, f” - ir,: + 1 = -Ahexp(r) , 

I’ t1 
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where 

h and A are dimensionless quantities and for a 

normalized field their magnitudes are equal to 1. 

To study the small oscillations in radial or 

vertical direction, one must expand the equation 

of motion (6) or (7) about the equilibrium orbit. 

Let the solution of the oscillation be 

R = Rq (1 t x) exp(r) , or Z = Rqy exp(r) 

Linearizing the differential equation (6) or (7) in 

x or y, the radial or vertical oscillation obeys 

x exp(r) , or 

Y” + r” = -A 
i 

r’%-E yexp(r). 
I 

(10) 

Equilibrium Orbit 

The function h exp(r) has a Taylor’s series 

expansion in powers of r; i. e. , 

,-L 
2 

7 
ltr(ktl+inK) t% (ktL+inK)‘+. . 

/ 

. 

J 
n. m 

x gnm 
expiinKrf t i(-nN t mM)e, , 

i ! 

where 

R 

r f 
= In ? . 

0 

For the sake of simplicity, only the first few 

terms are considered here. The question is how 

many terms are necessary for the required 

accuracy. For the structure chosen as an exam- 

ple, go0 and g+l m are the dominant field coeffi- 

cients. This can be justified from Table I. 

Therefore, the number of terms required in the 

expansion of h exp(r) for the accelerator depends 

on the value of 

Then Eq. (6) becomes 

r d (k t 1)2 t K2 

instead of 

(11) 
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If expression (11) is about 1, the error is about 

10% when three terms are taken into account. 

For the specific structure, 1 it is about 

0.1 (r r 103, k = 8.2, K = 75). Only two terms 

are needed and the error is Less than 0.5%. 

The number of periods of magnetic field per 

revolution, P, is the greatest common divisor of 

N and M. Then, s = N/P is the number of spirals 

and q = M/P is the number of radial straight sec- 

tions per period of the magnetic field. The solu- 

tion of Eq. (8) is assumed to be of the form 

I-= 
c 

rp exp(ilPB) with r = 0. 
0 

I 

The important terms in the equation of motion (8) 

are 

1-t exp(id PO) 

d,j 

where 

Al = 1 gnm exp(inKrf) 

(k t t t inK) exp 

q 0, 

The summations are over n and m under the 

condition that -sn t qm = 1. Comparing the 

coefficients for the harmonic number 1, A and r 

can be given in terms of k, K and g Let 
1 

nm’ 

x=x(“)tk’L. 
. . I 

rL 
= ry' t r:" t . . . , 

where the superscript indicates the order of 

approximation. In the zero approximation, X and 

rL 
are 

p’ = l/A 
0’ 

and 

p 
q XBr 

/[ 
L2P2 - X(k t 1) 3 . 

There are three pairs (n,m) which are impor- 

tant for the condition -sn t qm = 0. These are 

(0, 0), (q, s), and (-9, -s). X(O) becomes 

;“r-- -!-- - 

where a is the argument of g . The magnetic 

field is ZEaled for a finite numbs,“, of points in the 

radial direction, and its shape repeats itself q 

time in a superperiod. Therefore, A is a peri- 

odic function of the radius R or momentum p. 

A(‘) can be separated into two parts: the part 

due to the scaling field Go), and the deviation due 

to radial cuts in spiral geometry, Ax. We get 

.p’ 
S 

q l/g 
00 * 

The maximum deviation is 

To the fir order approximation and taking the 

value of ri’) for rl, A(l) and rj’) are 

0’ 
and 

(1) = A2 
rl s , 

r2P2-k0)(ktl) O 

where 

c 

t b2 

so = 
nm 

t cf, t dtm 1 E (-nN t mM) 
2 

- do’ (k t l)] ’ 

The summation is for n > 0, m 3 0, except 

bothn=Oandm=O. - - 

Betatron Oscillation Frequencies 

Knowing the equilibrium orbit, the betatron 

oscillations can be studied from Eqs. (9) and 

(10). In the second order differential Eq. (lo), 

the term r” corresponds to the main driving force 

which will cause vertical instability. The con- 

tribution of the term to the vertical oscillation 

frequency is small and can be neglected. The 

term r’x’ in Eq. (9) can also be neglected. The 

error is about 1%. Substituting the dimension- 

less field h into Eqs. (9) and (10) and expanding 

exp[r (k t 1 t in.K)] in the power of r, we get 

x" t xx B1 + rjC 
1 -j 1 exp(iPP0) = 0 , 

!,j 

L,j 
X exp(ilP0) = 0 , 
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where Equations (12) and (13) are valid when 

CL= g c nm 
(k t 1 t inK)2 expjinKrf] 

DL = c gnm (-nN t mM) exp 

The summations are over n and m under the con- 

dition -sn t qm = 1. These are the Floquet-type 

equations. The values of radial and vertical 

betatron frequencies vr and vz can be obtained 

by the application of quantum second order 

perturbation theory. 2 

4s with the dimensionless quantity A, vr and 

vz are not constant. Let the parts due to the 

scaling field be vr s and vz s, and the deviations 

due to the radial cuts be Avr and Au,. The 

values of Y and v z s turn out to be the 

averaged varies of vr’ and yz, respectively. Let 

-i 
- (k t 1)2 ia2 t b* t c2 + d2 

nm nm nm nm 

+ mM)’ - A (‘) (k t l)] ’ 

f 

s3 = c nm(-nN+mM)2 a2 1: 
- 

tb2 tc2 +d2 
nm nm nm 

I 
nmJ 

c(-nN t mM)2 - A (‘I (k t l)] ’ 

t (k t 1) lianmtb2 tc2 td2 
L nm nm nrni 

t mM)2 - 4v2 

I 
r, s 

lf 
1 

c 

nm !(nK)* t k2\ Ia2 +b2 t c2 + d2 

sz = 
J[nm nm nm nm] 

r i(-nN t mM)2 - 4~: 

The summations are for n 3 0, m =. 0, - 
except both n = 0 and m = 0. IJ”i;y the same 

method for simplifying X(l) and rl , the tunes 

due to the scaling field are 

2 
Y =k tl t a”)’ -S ts and 

r, s 1 1.’ 3 
(12) 

2 
” = -k f k”’ 

2, s 
s2ts3ts . 

z 1 

zll 2 
7 

-AK)’ t (k t 1) 
J 

Fnrn tb2 t c2 t d2 
nm nm nm 

[(-nN t mM)] 2 

J <<I, (14) 

0-c” 
P P 

cf -9 o<v CT-. - r, s 2 - z. s 2 

The maximum deviations Avr and Av become 
z 

g 
Av = 

oonXmax 
(k t 2) tx 

r Y 
r, s 

g2 [-‘l + 'r] (15) 

00 

av = 
goOn h 

max . 
z v 

(16) 
z 

z, s 

(k t 1) t+- [,,+,tS 

g 
I 

00 

Cole and Morton3 neglected all the harmon- 

ics n higher than q/2. In this case, the term 

cos 
1 
qKr - a 1 

explains f,hy % 

disappears or Ax is zero. This 

ey concluded that vr and vs were 

independent of momentum. Therefore, the har- 

monic number to be considered must be higher 

than the numbers of q and s. 

500 MeV FFAG Svnchrotron 

It is of interest to consider the performance 

of a high intensity FFAG with a view to its possi- 

ble use as an injector. A :Oi MeV FFAG syn- 

chrotron has been studied. 1 The parameters 

of the accelerator related to the calculation of 

orbits and operation points are: N = 16, M = 72, 

P = 8. k = 8.2, K = 75, s = 2, and q = 9. The 

magnetic field repeats after a period of two spi- 

ral sectors or nine radial straight sections. On 

the median plane, the magnetic field of the accel- 

erator is of the form in expression (3). The 

field coefficients5a,,, b,,, cnm! and d,, 

shown in Table I are obtained from a computer 

program (MURA F46). 

Using the expressions in the previous sec- 

tions, the dynamic quantities are: A(‘) = 0.84, 

A(l) = -6 x 10m3, AXmax = 3.7 x 10W5, r\‘), = 

3.~h;s:O;~Lu;f~sni,.~ x 10m3, . . . . r2 1s the 

p since the main contribu- 

tion is al0 which is the highest coefficient be- 

sides aoO. The condition (14) is satisfied since 

for the pair (1, O), the value is about 0. 15. For 

any other pairs (n, m), the values are much less 

than 0. 1. Equations (12) and (13) have been pro- 

grammed for the IBM 704 computer and for the 
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1. 19228 -.41445 

-. 20740 .09537 

-. 07438 ,035 17 

-. 00345 .00140 

.00816 -. 00433 

. 00000 

.02613 

.OOl26 

-. 00126 

-. 00028 

.ooooo .ooooo .ooooo . 00000 .ooooo .ooooo .ooooo 

-. 00846 .00116 -. 00063 -. 00034 .00008 -. 00002 .00001 

.00180 .00248 -. 00082 -. 00022 -.00003 -. 00004 .00003 

.00103 .00036 -.00005 .00004 -.00002 -. 00000 -.ooooo 

-.00014 -. 00029 .00024 .00006 .ooooo .00002 -.00002 
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. 00000 

.ooooo 

.ooooo 

. 00000 
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.ooooo 

.ooooo 

.ooooo 

. 00000 

-. 14867 -. 08327 

.03570 .02445 

.01616 .00917 

.00068 .00042 

-.00229 -. 00108 

.ooooo .ooooo .ooooo .ooooo .ooooo .ooooo .ooooo 

-. 00648 -. 00258 .00058 -. 00010 . 000 10 .00002 -.00003 

-. 00462 -. 00058 -.OOOll -.00037 .OOOll .00001 -.00001 

-.00022 .00009 -.00015 -.00005 -.00001 -. 00000 .00001 

.00073 .00006 .00001 .00008 -. 00006 -.00001 .ooooo 

-- 

2 3 4 5 6 7 8 9 

-. 02562 ‘. 00160 -. 00599 .00267 .00017 -.00028 

.00805 .ooo46 .00214 -.00113 -. 00006 . 000 14 

.00164 .00062 .OOlOl -.00045 -.00002 .00002 

.00008 -.00001 .00001 .00010 -.00001 -.00001 

-. 00004 -.00020 -. 00022 .00019 .ooooo -. 00001 

.02047 .0040 1 .00012 

-.00159 -.00002 

-. 00047 -. 00007 

.00002 -.ooooo 

.00008 .00002 

.00065 

-. 00746 

-.00325 

.00021 
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-. 00026 

-.00012 
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.00004 

-.00052 

.00022 
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-.00004 

Table . Median Plane Coefficients 

structure yield the constant part of tunes: References 

v = 3.23, and v = 2.37. 
r, s 2, s 

For comparison, Runge -Kutta evaluations which 

require a factor of six longer computing times 

yield average tunes of 

” q 3.22, and II = 2.49. 
r z 

From Eqs. (15) and (16) the deviations are 

I I AV < 0.0001, and Av 
I I 

= 0.0004. 
r - z - 
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