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Summary 

Nonlinear synchrotron oscillations are 
present in virtually all accelerators (for econom- 
ic reasons). For RF parameters likely to be 
used in 600-1000 GeV accelerators, or in high 
frequency (high harmonic) RF systems at lower 
energies, these nonlinearities give rise to nu- 
merous resonances, including basic noncoupled 
resonances which the present study investigates 
both by analytical and corn utational methods. 
A relatively simple theory Y has been sufficient 
to explain qualitatively many effects, such as 
“propellers” and “beads” in phase space, for 
both third- and half-integral resonances. Some 
extensions of the work of reference 1 are re- 
ported. However, understanding some details 
of the -Y =$ resonance was not possible without 
the use of Moser transformations. ’ In particu- 
lar, a null occurs in the resonance driving term 
as the synchronous particle phase 9, is varied, 
an effect predicted by the Moser theory. Our 
results indicate that suitably designed particle 
accelerators may operate in the vicinity of some 
phase oscillation resonances but that the reso- 
nances in question influence the desirable choice 
of a;,. 

A. Introduction 

In most conventional treatments of particle 
motion in accelerators, the expression 

(1) 

where r z sin 5, is the fraction of the maximum 
possible energy gain V per turn1 which is need- 
ed for a particle to remain synchronous (all no- 
tation agrees with Ref. l), is used for the fre- 
quency of phase oscillations, taken to be small 
compared to unity and to betatron oscillation 
frequencies. This is not an exceptionally good 
approximation for some present-day accelera- 
tors which obtain values ‘V, z 0. 05, and may fail 
completely at the higher energies (ZOO-1000 GeV) 
envisioned in the next “generation” of accelera- 
tors. The maximum Y; attained during the accel- 
eration cycle (above transition) is roughly 

‘*Work performed under the auspices of the 
U. S. Atomic Energy Commission. 

(2) 

attained at roughly 3 r,, where rY,E, is the 
transition energy. 

As I/ $-a# is comparable with unity for the 
highest energy and/or frequency accelerators 
currently under consideration, resonances will 
undoubtably be crossed and resonant effects may 
become important and limit stability. This was 
shown in Ref. 1, as well as the fact that the 
synchrotron oscillation frequency for an accel- 
erator with any periodicity N of evenly spaced 
RF gaps is given not by s but by y, (74) , where 

to5 ZL!% = 
IN 

1 - 3 p, (3) 

The Hamiltonian of the motion about the synchro- 
nous phase $and energy Es was given by 

H (‘4,g,r) - $ + Lls* z.Aq -/tan~5(iF-kmrJ]. 
[ 

. 1 +~~LOdjN7+~~~ 

C 
Led mr I (4) ml‘ 

where 

r=-y+E,), Y+H,, T= .mfst, (5) 

8 being the phase of the RF gap when the particle 
passes it (‘P = y = 0 for the synchronous particle). 
In the limit Y-c< 1 , the time dependence of H 
becomes of negligible importance, and one ob- 
tains the conventional “bucket area, ” given3 by 

A,= 16 v, cxtr) = 16 d9(r)j/mi (6) 
5 

in y- Cp units. 

From this point, in the approximate theory 
the Hamiltonian was transformed to canonical 
polar coordinate 

r= Lc‘4-’ d 
and py-?? + <-!fx 

ru, 2 

giving H =‘Xp+ -mm and an approximate non- 
linear Hamiltonian was assumed with a central 
part 
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1-k lr P<. , 8p,. r 2 (7) ' , 
where 

CCL! 
a 14 Jcl;O), -+, 
2 P 

,-I1 K D i I A (8) 

was correctly matched near p = 0 (i 
% 

noring non- 
resonant time dependence), and the n resonance 
was then made stationary by going to rotating CO- 

ordinates/? =/J and .<= Y - y, so 

lj - /i-;/2 (‘3) 

and the resonant part derived from Eq. (4) 
became 

n 

H -,/:&=*g 2“Epii,:2-i _ _ i 

G n i 

“Y&-y i ” (10) 

in the lowest order. [ : :%j 

While the preceding approximate theory was 
quite useful, it is accurate (topologically) only 
to first order in tan *s. The mofe thorough 
basic theory developed by Moser (as an exten- 
sion of earlier work4) corrects this deficiency, 
giving more accurate predictions (even qualita- 
tively, for the resonance lJ& = 4’ ). The Moser 
transformations generate a formal solution to 
the problem and this is carried out to quartic 
(~‘1 order in Section C. 

B. Extensions of Simpler 
Treatment of Resonances 

Application of the simpler theory is quite 
beneficial for understanding the half-integral 
resonance. Referring to Figs. 6 and 8 in Ref. 1, 
the Hamiltonian 

H 1 (vu-;),2 -&- (11) 
16 

gives the correct linear stopband 
J- -z v., < Z+lCl &7- 

and predicts the observed larger amplitude sta- 
bility, for )t;c( 1 , but not for G = 1 where an 
absolute upper frequency cutoff is encountered, 
at V5= + , rather than just a “stopband.” Theo- 
ry and experiment also agree as to the variation 
of the observed propeller size with L’, and 6. 
The propeller increases from zero size at 

V = & to maximum size at $, with an area 

A,= I++@yt (W-l)pT- ‘2(3&j), 
/6((4 I (12) 

which becomes Ap, = 8t (directly proportional to 
the imperfection signal) at <=+ (by contrast the 
propeller area varies as e2 at K=f ). Below 
the Y,= i imperfection resonance, topology is 
normal, but above it, beads occur, as shown in 
Fig. 8 of Ref. 1. Areas of the propellers and 
beads are tabulated at the end of this section. 

In the previous paper we established that 
the effects of the X. = 3 resonance could be made 
small for an imperfection resonance but always 
followed the same pattern, namely petals, pro- 
pellers, and beads (Fig. 2 of Ref. 1). We have 
investigated computationally and theoretically 
the dependence of this resonance (for 1”;: 0.6, 
IE! -SC 1 it becomes as strongly driven as the 
corresponding half-integral resonance) and will 
discuss in Part D the conditions under which the 
propellers or beads, for the intrinsic ( t = 1) 
case become “detached” and degenerate into 
“islands of stability. ” 

We may drop terms of higher order than ,A& 
in the expansion of Eq. (7), to investigate the 
topology of the quarter -integral resonance near 
p= 0. Using Eq. (9) we then obtain 

e = (v, - $ ),2. - 5 - $ Ld 4 

This Hamiltonian implies that no petals or pro- 
peller will form (i. e. , normal toplogy at V- 5 $ ), 
as differentiating B with respect top and _V 
yields stationary or fixed points at 

(p, <) = 

( 

!M) 
1’4 

, tn +f)$ 

1 

(14) 

where the bead centers tapper possibilities in 
Eq. (14) iff t > 0) always occur for the larger / 
value and the unstable fixed points (saddle points 
of H) occur at the smallerp in (14). Actually 
the dependence of ally’ coefficients involves ad- 
ditional terms containing the factor 

tan2 Q, = ;$ , but toplogically the conclusions 

above have been correcffor I7 6 0. 7. 

The simple theory (first order in tan $, ) 
fails to predict a null (and change in bead posi- 
tion) in the resonance as r is increased, an 
effect observable in Fig. 2. This prediction 
occurs, however, in the more accurate Moser 
transformation treatment to be described in the 
following section. 

Similar (less accurate) statements could be 
made about the V,= j resonance, for which 
Moser transformations are even more essential. 
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Area predictions of the above theory for the 
variation of resonant phase space areas (propel- 
lers and beads) with V, , E , and r (but only for 

r << 1) seem well verified (for pd<pc ) and are 
summarized in the following table of areas: 

%. Propeller Area Area in Beads 

r 
2 816: at v,:-: ,+ $) -j/(~:i,~’ 

7 
t (za- i) A&“/* ] 

:I z t ’ tan ‘p-s 2- 1 

$ 0 / : 8fl(y,-$1 

in the ( q, y) units used above. 

C. Moser Transformation of the Motion 

The Moser transformations successively re- 
move the time dependence from H to higher 
orders in p . The “linear” transformation (using 
Floquet solutions) changes it to the form5 

The third order transfogmation (which was done 
in complex coordinates ‘g =$Z’e” and 9 = ,f,ji,$G, 
as a convenient though unnecessary generaliza- 
tion of the usual canonical transformation) was 
generated by 

k&l:3 

+;k 9$ s::‘~.:]zh”‘-‘f’9~~8 (16) 

*.*-a 
where *‘.>‘=3 

i Ii3 zj-(,:R+ ?2 , ,?=;H 

is used to completely remove the pk~(tiy;e’“’ 
terms from H (for V, <+ ), where 

s,, = LI s*,me~h,r 
s -1 fl u,“‘~, +@+ 4, ; yl*) -- 

em 4[<‘“-+mpy~ 

producing 

l-j, = XP3 + (wa+ 3%003 e w,,,, + c,,,,) P’ + 

+ ( h,.13+31dz,03+ c no3)dJ~~~ + fwo,$ w,*bJp$~g) 

where yt, w,,,,. and C,,,‘,. are functions of 7 
defined by 

Wdi -&.sb>,e”F= -&y&q 1 
C *Pk’t’ .~ z y, sst Jst, y+- 

W hPk’9 ’ = C tRC,l, - w 5 ,iYw&,,, S ih-” *9 l“.t “9 
(20) 

As wtip and S,, contain the factor tan& , all of 

the Wbir2, and S,,,,l. terms contain tan2 $ = Z.5 L 

as a factor. Similarly, the fourth ordir l&:er 
transformation eliminates all of the nonresonant 
7 dependence from/ terms. We may then apply 
the transformation (9)(with m = 1, n = 4) to 
rotating coordinates, obtaining 

-H, = fyc -; )/Q4 + i%,o 2 2 %mo +; w,,,,, + c,,,& + 

+ 2wo,,+3\i\l l ftOj,)j2+ (-j4,) 
(21) 

where WkliY,ti and Skil;,a,m satisfy relationships of 
the form 

Yw = f ~~ik~p~me’mT, )I):-* WziItl~lki=W~ikl,~k-m . 

Evaluation of the coefficient (2 “~414~ + 3 W12031) 
in (21) indicates that W12031 is of the form 

2 wo41 
[ 

1 - tan’+,(a++-- 
‘I 3 -JG 

where a (V, ) and 

b ( V, ) are positive slowly varying functions, car - 
rectly predicting the null in the driving term (but 
the coefficient of tan2$, is too small for good 
numerical agreement with computations). While 
a similar effect in the central term could possi- 
bly produce changes in the topology for V, L_ $ , 
computations indicate the w220part is dominant, 
at least for f 5 0. 7, so the topology is normal 
below and at y, = $ . 

It might be noted that a similar study of the 
V, = i resonance (which is relatively minor ex- 
cept if tan $g is large could be carried out, keep- 
ing terms of order ,~‘a in H, but that a higher 
order correction must be added to (16)(to deter- 
mine tan3$ terms which drive the V,= 4 
resonance). 

D. Computations and Large 
Amplitude Phenomena 

A computer program (MURA Program F151), 
described in Ref. 1, was used to test the preced- 
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ing theories and to examine large amplitude mo- 
tions (and questions of stability) not completely 
determined by the theories. Previously, for 
fixed r, ( r = 0. 5) variation of Y, was studied 
(Figs. 3, 4, and 6-8 of Ref. 1). The present 
computations have involved varying r near reso- 
nances, particularly the intrinsic l/3 and l/4 
integral resonances. 

Near the resonance I/, =$ (N = l), resonant 
effects simply aren’t confined to small ampli- 
tudes, unless r<< 1. Figure 1 shows the strong 
dependence of large amplitude stability on r . 
Figures 1-A and 1B indicate the change that oc- 
curs even without the resonance, and 1C shows 
the existence of a stable bead structure for 
r = 0. 3. In general, however, for values ti >i , 
even small-f beads become islands as v0 is in- 
creased. This happened (not shown) around 
U, = 0. 36 for r’= 0.3 and 0. 39 for r = 0.1, for 
the parameters we used (which involve minimum 
conceivable values of the a 

9 
ustable parameter 

h, and largest Rf voltages e, where V/Es-O. 030 
the most unfavorable case for stability). For 
FL_ 0. 5 large amplitude stability is present at 
Y, = $ where small amplitudes are unstable, so 
that particles could be brought through the reso- 
nance from vc > 4 to V,<$ with high efficiency. 
For r 7 0. 5, this is not true (even the “propel- 
ler” is unstable). For either case, phase space 
dilution would be very great for particles that 
survived. Conversely, only a small fraction of 
the beam could survive a passage upward through 
the resonance even for low values of r . 

For the intrinsic quarter-integral resonance, 
the situation is less pessimistic. Figure 2 shows 
that bead positions change between r = 0.3 and 
0. 5 indicating that the predicted null in the reso- 
nance lies between them, rather close to 0. 5 in 
the lower frequency case (it was about equi- 
distant for U,= 0. 272). Thus, in passing 
through this resonance values of f’ around 0.4 
seem advisable (slightly lower for higher Y, ), or 
one might possibly avoid any effects by suitably 
programming r(V,). Large values of r caused 
instability, however, as Fig. 2D indicates, for 
r = 0.7. 

In calculations with symmetrically placed 
accelerating gaps (N = 5; see for instance Figs. 
7 and 8 of Ref. 1) the half- and third-integral 
imperfection resonances become quite manage- 
able and the one-fourth integral resonance 
becomes negligible. 

E. Conclusions 

The use of Moser transformations has been 

seen to generalize our original theory so as to 
make correct qualitative predictions for all of 
the small to medium amplitude resonance phe- 
nomena so far studied. 

We have investigated the r dependence of 
the one-third and one-fourth resonances in an 
N = 1 system and find that except for very small 
r, the third-integral resonance is disastrous, 
but that the effects of the quarter-integral reso- 
nance may be minimized. In particular, if r is 
to be held constant as Y0 is varied, a value of 0.3 
to 0.4 for r renders resonant effects minimum. 
In an accelerator with many (we used N = 5) sym- 
metrically placed accelerating gaps, however, 
the one-fourth, one-third, and even half-integral 
resonances cause relatively small perturbations. 

In any practical device for acceleration (i. e. 
not including stationary bunching applications of 
an RF system) in which one plans to cross the 
resonance Y, = 4 in an upward direction or oper - 
ate with Y, significantly greater than one-third, 
we have shown that two or more accelerating 
gaps (symmetrically placed) are necessary. 
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Appendix 
Floquet Functions for Synchrotron Oscillations 

The matrix5 for transformation through one 
revolution is given by 

N 

I. 

6zzLb 

Mw = 
Litiotq.&G Rh.we 

NA, a:(t-ij2$~ .-- , 
i cz,$~ 

f=l-$ 

YA.im5 C~O-aLKT g= ! - wkl-fi y; y;- 
Y, ,Gq; ’ “J=q 

The linear transf. to c.‘<. eoordinataj 3 arid 3 is given by 

yI,fF[eiX5t e 
.‘“f] y ~ ; ,.j?j(,.,+?y -(If &‘* ‘I 

where pu : (~evaiuatc~d bt 7:a.j 2nd 

31 = - 4+&+r, I .I$ 
v*+c 
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