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Collins1 presented a method of graphical eval- 
uation of certain orbit constants for alternating- 
gradient synchrotron lattices of the FODO type. 
His paper does not describe the process for obtain- 
ing the constants, which appears to have been by a 
combination of exact numerical solutions and ana- 
lytic approximations. The present paper describes 
a process suitable for an electronic computer, and 
presents orbit constants for FODO and several other 
lattices: FOFDOD, FDO and the mirror pair DFFDO 
and FDDFO. In all cases, the results apply to 
simplified lattices with no drift spaces other than 
indicated by the "0" and with identical focusing 
and defocusing magnets. End effects are ignored, 
I.e., the magnets are sector magnets curved to 
match the synchrotron ring curvature, with end 
faces normal to the center line. 

1. Results 

The quantities obtainable from the graphs are 
I3 max ) Pmin , X0 and CY ) where B is the betatron os- 
cillation amplitude function, X0 is the character- 
istic length of the magnetic field gradient and o 
is the momentum compaction parameter = AC/C $ ApIp. 
By definition X0 = B,/G , where G is the gradient 
and B, is the center line field strength. The 
graphs give the quantities AS , A, and & as a 
function of n and 5 , from which one obtains p , 
X0 and w via the equations 

B =ARC/N (1) 

xO 
= Ax C/N2 (2) 

“i = <4w/v2 . (3) 

Here C is the machine circumference, N is the num- 
ber of periods, J is the phase shift per period, 
L is the number of oscillations per revolution, and 
o is the fraction of C in straight sections. De- 
pending on the type of lattice, Cmin , bmax , X0 
and 2 may or may not be functions of 0 . Where 
they are, they are presented as a family of curves 
corresponding to 0 = 0.25, 0.35, 0.45 and 0.55. 

In the usual case of parameter juggling, C is 
fixed and B, and o are related by 

B,C (1 - u) = 2rr pc/e (4) 

where pc/e is the magnetic rigidity of the particle 
in units consistent with the product BoC . The 
field at a distance r from center line is given by 

B = B, 
0 

* 
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(5) 

2. Method of Computing the Parameters 

All dimensioned variables are made dimension- 
less by the factor l!/K which has the dimension of 
length, where K = G/(pc/e) is the magnet force 
constant. If M is the matrix for a lattice ele- 
ment, let z be the corresponding dimensionless 
matrix. Thus the dimensionless matrix for a focus- 
ing magnet is, for example 

c 

cos $ sin ji 
jT= 

-sin 1) cos * 1 
where Jr = /K L and L is the magnet length. It is 
easily shown that (Ml M2) = El M2 and that if V is 
a vector, Tr;ivT = B v . One can therefore multiply 
a series of dimensionless matrices or vectors and 
regenerate the dimensioned form from the end re- 
sult. 

Arbitrary values are picked for CJ and $ and 
the various dimensionless lattice element matrices 
are multiplied together giving the dimensionless 
lattice matrix E having elements cij . 
shift p is then obtainable from* 

The phase 

cos p. = -?i (C 11 + c*2)= ‘5 cc,, 

From* cl2 = 6 sin p = F,,f/K 

1-a %2 =- - 
"R nJi sin L 

+ C2$ 

, one gets 

(6) 

where n is the number of magnets in the lattice. 

Similarly, from Jr2 = KL2 = 21L/(n N X0) , one 
gets 

A 
= 2n (1 - 0) 

x n2 Jr2 ' 
(7) 

As a test to insure that B is indeed an ex- 
tremum, one can also compute a = 5 (Cl1 -7T22)/sin d 
which should be essentially zero. If the exact 
location of the extremum is not known, the extreme 
value of R can be computed from b at any point in 
the lattice element, using the fact that KS + '/ is 
constant within a lattice element. (y is the third 
betatron oscillation parameter of Courant and 
Snyder.2) 

From By = 1 + a2 

and a = 0 at an extremum in 13 , 

KB, + l/S, = KS + (1 + a2)/B 

where Sx is the extreme value of 3 and a and B 
pertain to any other point in the lattice element. 
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The solution of this quadratic is 

(8) 

The proper sign must be used for K : plus in a 
minus in a defocusing magnet. 

In a drift space, 
the proper form for (8) is 

Bx = B/(1 + a2) . (9) 

The momentum compaction may also be obtained 
using the dimensionless matrix technique and a meth- 
od described by Livingood.3 The equilibrium orbit 
of a particle of momentum p4+ dp is obtained by a 
method described by Courant and the path length is 
computed along this orbit. The equilibrium orbit 
is obtained by offsetting each magnet an amount 
AY = x0 &J/P , plus for defocusing magnets, minus 
for focusing magnets. For example, ghe effect of 
an offset focusing magnet on vector Yl could be ex- 
pressed as 

= F(?l - -dY) + TiY 

where XY = ( 'OY ) . 

An arbitrary initial vector 21 is azted on by 
the altered lattice, producing a vector X2 . Thus, 

2, - z = c '2, - ;, 

or z = (1 - C) -l (2, - c ii,, 

- where e is the equilibrium orbit vector, If 21 = 0, 

;= (1 -C) -1 - 
x2 . 

Having the equilibrium orbit, the path length 
in a magnet is given by 

s[ (1 + Y/$I~)~ + Yj2 1% dx 
b 

and in a drift space by (1 + Yf2)' Ax , where Y is 
the radial displacement and x is the azimuthal dis- 
placement. To first order, the increase in path 
length in the lattice is simply 

Y dx 

where the integral is over every magnet in the lat- 
tice, and P, is the radius of curvature at the mag- 
net center line: 

P 
0 

= pc/(e Bo) = nN$/(2n/K) . 

The fntegral is evaluated numerically by mul- 
tiplying e successively by the matrix for each 
element in the lattice. Each magnet matrix is di- 
vided into eight submatrices, thus obtaining Y at 
nine positions (including the beginning), and the 
integral is obtained using Simpson's l/3 Rule. 

Then 

1 

s 
ydx = ti 

nN 11 s 
Ydx = % 

*W s 
T?dx = 2n Ax C y 

*W i 

where Ax = (1 - CJ)/C~~) C/N and fii means the 
I  .  I  

Simpson's Rule summation, 
is A? = AY /K , so Ap/p = 
v = Np!2n 

AY in dimensionless form 
AT/(/K X0) , and using 

> 

2 ct;. 1 
r 

(10) 
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Fig. 2. A, and A, vs. p, FODO lattice. 
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Fig. 1. .4pmax and Apmin vs. phase shift per period 

p, degrees, FODO lattice. 
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Fig. 3. Apnnax and APtin vs. fl, FOFDOD lattice. 
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Fig. 4. Ax and A, vs. p, FOFDOD lattice. 
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Fig. 5. Apmax and Aptin VS. /A, FDO Or DFO 

lattice. 
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Fig. 7. Apmax and APtin vs. p, DFFDO lattice. Fig. 8. Ax and A, VS. p, DFFDO lattice. 
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Fig. 6. A, and A, vs. p, FDO or DFO lattice. 
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Fig. 9. AomLx ad Aptin VS. p, FDDFO lattice. 
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Fig. 10. Ax and A, vs. p, FDDFO lattice. 
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