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Summary 

The coherent electromagnetic self-forces of 
a beam of particles in an accelerator can render 
unstable the motion of individual particles, or 
give rise to unstable coherent motion of the beam. 
The latter is the subject of this work. Coherent 
longitudinal bunching of an azimuthally uniform 
beam can result from the negative mass insta- 
bility or interaction of the beam with the acceler- 
ating cavities. The negative mass instability can 
be suppressed by a sufficient spread in circulation 
frequency or by surrounding the beam with 
appropriate walls. The beam-cavity interaction 
can be overcome by careful design of the rf sys- 
tem. The interaction of the self-fields with the 
surrounding walls can lead to unstable coherent 
transverse motion through the finite resistance of 
the wall material. This instability may be sup- 
pressed by a sufficient spread in betatron 
frequencies. The relatively slow growth rate 
also allows stabilization by means of electronic 
feedback, and the stabilizing effect of passive 
structures has also been investigated. Experi- 
mental and theoretical investigation has led to 
an understanding of these effects to the extent 
that accelerators can be designed to overcome 
the instabilities. 

1. Introduction - 
All beam-induced instabilities in particle 

accelerators have a common ultimate result - 
they limit the number of particles that can be 
accelerated in the machine. It is unwise to 
design a new accelerator and attempt to predict 
an achievable current without considering all 
known limitations. The purpose of this work is 
to make the reader more familiar with some of 
these limiting effects and the degree of under- 
standing that has been obtained with regard to 
them. In plasma physics new experimental 
devices are designed to circumvent instabilities 
as they are discovered and investigated. It is 
also possible to apply this philosophy to the 
design of particle accelerators. 

In this work I shall catalogue several insta- 
bilities that arise from the coherent electromag- 
netic self-forces of the beam, These forces can 
render unstable the motion of individual particles, 
or result in unstable coherent motion of the entire 
beam. The former has been rather thoroughly in- 
vestigated, and will not be discussed. Rather, I 
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shall concentrate on effects that result in unstable 
motion of the beam as a whole. No attempt will be 
made to familiarize the reader with the mathemat- 
ical details of the treatment of various instabili- 
ties. The calculational techniques used are 
straightforward (at least in principle) and well- 
known to plasma physicists. When possible, a 
simple physical explanation will be given for each 
instability. I shall discuss the dependence of the 
growth rates on the parameters of the machine, 
and present methods whereby the instability may 
be suppressed. The presentation draws on the 
work of many theoretical and experimental physi- 
cists throughout the world, and I shall not attempt 
to give complete references. A comprfh,ensive 
bibliography has been given by Sessler m a paper 
similar to this one, and the references of this 
paper are limited primarily to work published or 
performed subsequently. 

Taking a positive approach to the problem, 
I shall devote the next section to a general dis- 
cussion of methods for suppressinginstabilities. 
These methods will be illustrated in more detail 
when applied to the specific instabilities in Sec- 
tions 3 and 4. Two phenomena that result in 
unstable longitudinal motion, the negative mass 
effect and the interaction between the beam and 
the rf cavity, are discussed in Section 3. The 
negative mass instability is a particularly good 
example because it is easily understood physically 
and can be suppressed by several methods. 
Transverse resistive instabilities in both bunched 
and unbunched beams are discussed in Section 4. 
Section 5 contains a few observations regarding 
coherent effects in storage rings and Section 6 
contains some general conclusions about the pres- 
ent state of theoretical understanding. 

2. Methods for Suppressing Instabilities 

A. beam of particles may undergo unstable 
motion for a variety of reasons, and some of 
these will be apparent in the following sections. 
The unstable motion falls generally into two cate- 
gories: either the beam undergoes unstable 
transverse oscillations, or unstable longitudinal 
motion results in a longitudinal density fluctua- 
tion. The diverse methods of stabilizing the 
motion are discussed below. 

Landau Damping 

Historically, the first method investigated 
for suppressing instabilities in accelerators is 
the mechanism of Landau damping, which relies 
on a spread in some parameter within the beam. 
If the beam is subject to unstable longitudinal 
oscillations, a spread in circulation frequency is 
effective. This spread may arise from a spreaf 
in energy or in betatron oscillation amplitudes. 
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If the beam is subject to unstable transverse 
oscillations, then a spread in the betatron fre- 
quency is effective. Theoretically, a criterion 
exists for each instability, and this criterion 
places a lower limit on the spread necessary to 
suppress the instability. This lower limit always 
depends upo:l the beam current as well as the 
parameters of the machine. Thus, when Landau 
damping is relied upon as the sole method for 
suppressing d particular instability, the spread 
in the appropriate quantity may bc insufficient for 
stability at some current level. When this level 
is exceeded the beam becomes unstable, and the 
entire beam, or a portion of it, is lost. In some 
instances it is possible to artificially introduce 
additional spread, suppress the instability, and 
achieve a higher beam intensity. 

Altering the Beam’s Environment 

TLlany instabilities may be suppressed by 
methods that do not rely on a frequency spread 
within the beam. These methods can render the 
beam stable in the absence of any spread, and 
their effectiveness is independent of beam inten- 
sity. These methods may alter the configuration 
of the eqL:ilibrium electromagnetic fields (either 
the external guide field or the coherent self-fields 
of the beam) in such a way as to render the beam 
stable under certain perturbations. 
though not uwful, 

A simple, 
example of this is the stabili- 

zation of longitudinal density Iluctuations in an 
azimuthally uniform beam. Above the transition 
energy, these fluctuations can lead to the nega- 
tive mass instability, which will be discussed in 
detail in the next section. But it is possible, in 
principle at least, to alter the magnetic guide 
field so tllat the beam is always below transition 
and the instability does not occur. In Section 4 
more practical examples of this method will be 
given. Dekanskij and Skrinski3 as well as Courant 
and Sessler4 have shown that a proper choice of 
axial hetntron wave number v can stabilize the 
irertical motion of a single bunch of particles. In 

addition, the analysis of Ref. 4 shows how the 
value of v can determine the unstable normal 
modes of a beam with more than one bunch. 

Another method of stabilizing coherent 
motion is to alter the fields arising from the 
perturbation (not the euuilibrium fields) in such 
a way as to render the motion stable or cause the 
perturbation to decay. This can often be accom- 
plished by surrounding the beam with an 
appropriate structure consisting of passive elec- 
tronic circuits. This method draws unnn the vast 
technology that has been developed by workers in 
the field of traveling wave tubes. Although these 
workers ‘nave been concerned with structures 
that render a beam unstable and thus Sorm the 
basis for amplification, similar techniques can 
be applied in accelerators to insure stability. In 
the case of the negative mass instability, TWT 
structures are directly applicable, as will be 
shown in the next section. The presence of the 
wrong kind of external circuits, on the other hand, 
can have an extremely adverse effect on beam 
stability. In particular, if clearing electrodes 
are to be used in a machine, care must be 
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taken to insure that this circuit is properly 
terminated. 5 

Stabilization by Feedback 

A spectacularly successful method for 
suppressing transverse instabilities has been 
used in several accelerators. This method is 
related to the previous one, except that the ex- 
ternal circuits are not passive. It is the method 
of feedback. Transverse motion of the beam is 
detected electronically, the signal is amplified, 
then fed back to the beam in such a phase as to 
damp the transverse oscillations. As discussed 
in Section 4, transverse instabilities result from 
resistive losses in the surroundings of the beam. 
The growth rate is generally quite long, of the 
order of milliseconds, and it is just this long 
growth time that allows the feedback mechanism 
time to work. In a broad sense, the feedback 
circuit can be regarded as supplying a negative 
resistance. 

3. L-nstable Longitudinal Motion 

In this section two examples of instabilities 
that result in a longitudinal bunching in the beam 
are discussed. First we present the negative 
mass instability, and second the instability that 
can result from the interaction of an azimuthally 
uniform beam with a rf cavity through which it 
passes. Either of these effects can occur in a 
bunched beam, and in practice do, but the theory 
is much more simple for an unbunched beam. 

Negative Mass Instability 

The negative mass instability has the 
destinction of being one of the very few dynamic 
effects in accelerators to be predicted theoret- 
ically before it was observed. 
explanation is quite simple. 

The physical 
Suppose that a beam, 

which has uniform density in the azimuthal direc- 
tion, is subject to a perturbation that locally 
increases the charge density. Particles at the 
front of the region of increased charge feel a 
force that tends to accelerate them. But if the 
circulation frequency is a decreasing function of 
energy, those particles move out ra%cally, lose 
azimuthal velocity. and fall back toward the 
center of the bun:&. Similarly particles at the 
rear of the bunch move inward radially, increase 
their azimuthal velocity and move forward toward 
the center of the bunch. The azimuthal bunching 
limits the intensity of the accelerator by reducing 
the capture efficiency of the rf system. If the 
bunching persists after capture, the interaction 
of the bunches causes loss of particles from the 
stable phase region. 

For a density fluctuation with azimuthal (0) 
and time dependence exp i(nO-i;t) in a beam with 
no frequency spread, the analysis “yields the 
following expression for 62: 

(1) 
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uhcrc o c is the ,~ng~~la.r circulation frequency, e 
is the electron charge, R is the major radius of 
the beam, y 1s the particles energy in units of the 
rest energy, and E is their energy. The total 
number of particles in the beam is N. and g is a 
function of 7’ as well as the geometry of the beam 
and vacuum tank. For perfectly conducting walls, 
the quantity g is independent of y and always posi- 
tive. We see that above the transition energy 
where awc/aE is negative, one of the roots of 
Eq. (1) corresponds to an exponentially growing 
wave. 

If the instability is to be suppressed by 
I,andau damping alone, a spread in circulation 
frequency no, is required. The lower limit on 
the spread necessary is given by 

Awe = K Im w/n, (2) 

where the imaginary part of w is found from 
Eq. (1) with awc/aE < 0. The quantity K in Eq. (2) 
is a constant of order unity. Its exact value 
depends on the form of the frequency distribution 
of the particles. Physically the criterion states 
that in order to suppress the instability, the 
spread in frequency must be great enough to allow 
particles to sweep through the bunch in a time 
comparable to the growth rate in the absence of 
dani-. 

It is not always convenient or even possible 
to provide enough frequency spread to satisfy 
Eq. (2). But notice that in general, the quantity g 
depends on the energy of the particles. With the 
proper choice of walls, g can be made positive or 
negative.637 In fact, if the walls are properly 
constructed, the energy dependence of g makes it 
possible for g to change sign from positive to 
negative right at the transition energy. Thus the 
product gaw,/ 8E remains always positive, and 
the instability is suppressed throughout the 
acceleration cycle. 

The possibility of constructing walls that 
result in a negative value for g follows directly 
from TWT technology. In a TWT the particles 
have positive longitudinal mass, and structures 
were sought that would render these beams 
unstable to longitudinal bunching. Such devices 
fall into the general category of inductive wall 
amplifiers. It need only be noted that a structure 
that makes a positive mass beam unstable will in 
turn stabilize a negative mass beam. Several 
such structures are described in Refs. 6 and 7. 
Typical of these structures is the helical ribbon 
surrounding the beam, as shown in Fig. 1. For 
this structure we have 

82 -I 
2a2 ’ 1 (3) 

in which the unperturbed velocity of the particles 
is ;3c, and the approximation sin2 a = a2 has been 
used. All other quantities are defined in the 
figure. We see that g < 0 if the condition 

y2 > 1 + 2 a2 In (b/a) 

L BEAM 
(RADIUS a 1 27r b SIN o 

Fig. 1 Helical conductor for suppressing the 
negative mass instability. The 
structure forces the image current, 
I w, to flow in a circuitous path, thus 
enhancing the magnetic field of the 
‘beam, 

is satisfied. Although this result is based on a 
rather idealized analysis and the value of the beam 
radius, a, is not under strict control, it is 
apparently possible to choose cy, a, and b such 
that g changes sign from positive to negative when 
Y = Ytt where Yt is the value at the transition 
energy. For machines in which y > Yt at all stages 
of the cycle, it suffices to choose (Y, a and b such 
that g is always negative. It must be emphasized 
that the theory of Refs. 6 and 7 is applicable only 
for perturbation wavelengths X such that h >> b. 

In concluding this discussion we note that if 
the walls have finite conductivity, the quantity g 
has an imaginary part, and Eq. (1) will always 
have a root with a positive imaginary part, cor- 
responding to an exponentially growing wave, This 
so-called longitudinal resistive wall instability 
has been predicted theoretically, but never really 
identified experimentally in an accelerator. The 
instability arises from the same phenomena that 
is utilized in the resistive wall amplifier. 

Beam-rf Cavity Interaction 

The interaction of the beam with an rf cavity 
or cavities manifests itself in many ways. One of 
these is simply referred to as beatn loading. The 
term conventionally covers the effect of the 
presence of the beam on the cavity and its driving 
mechanism during the normal accelerating cycle. 
Though not a dynamic instability, an undesirable 
consequence of the effect can occur during the 
capture process. In steady state, the back voltage 
induced by the beam is equal to the product of the 
shunt impedance of the cavity and the Fourier 
component of the beam that is in resonance with 
the cavity. This is not generally true during the 
transients of the capture process, but the induced 
voltage can be appreciable. The accelerating rf 
voltage is usually turned on slowly in order to 
capture adiabatically the particles already injected 
into the machine. If the shunt impedance is too 
large, the induced voltage may become large 
enough to significantly alter the total voltage, and 
the entire capture process is disrupted. An 
obvious way to alleviate the problem is to reduce 
the shunt impedance, at least during the capture 
process. 
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As an example of a dynamic instability 
arising from the beam-cavity interaction, consider 
an azimuthally uniform beam and a rf cavity 
through which it passes. For purposes of this 
discussion, the cavity is not being driven exter- 
nally. It is present for use in some other part of 
the accelerating cycle or, in multi-purpose 
accelerators, to accelera’e some other species 
of particles. If the cavity has an eigenfrequency 
near a harmonic of the beam circulation frequency, 
a resonance condition exists that can lead to 
azimutnal bunching of the beam. It must be empha- 
sized that 9 eigenmode of the cavity, not just the 
fundamental mode, is a potential source of this 
effect. 

The effect is closely related to the negative 
mass effect discussed above. We can define a 
quantity q analogous to the quantity g in Eq. (1). 
This quantity is directly proportional to the shunt 
impedance Z of the particular mode of the cavity 
near resonance. If the cavity mode is inductively 
detuned from a harmonic of the circulation fre- 
quency, q is negative and a beam below transition 
energy- may be unstable, while a beam above 
transition is stable. If the cavity mode is capaci- 
tively detuned, q is positive and the situation is 
reversed. The lower limit on the frequency 
spread in the beam contains the product of the 
shunt impedance and the beam current. The most 
stringent criterion, which is sufficient for 
stability either above or below transition, is 
given by 

/ 7 % < ‘“;‘ey;lb$ 
7 

(4) 

in which Zs 1s the impedance of free space (equal 
to 377 ohms), m 0 i.s the rest mass of the particles, 
and ro is the classical radius of the particle. 
In writing this condition, it has been assumed 
that the frequency spread arises from energy 
spl~ad alone and 1E is the energy spread neces- 
sary for stability. ,4dditional frequency spread 
can i,esult frotn the spread in betatron amplitudes. 

The effect described above can also occur 
for bunched beams. A beam being accelerated by 
the fundamental mode of an rf system may en- 
counter resonances with a higher mode of that 
system, or sotne nlode of another system if one 
is prtsent. Cart should be taken to avoid such 
resonances and if this is not possible, to keep the 
shunt itripc~dances at sufficiently low values. 

4. Transverse Resistive Wall Instability 

An instability attributed to the finite resist- 
ance in the walls of the vacuum tank was first 
investigated by the RIITRP, group in the 50-Me\’ 
electron accelerator. The instability manifests 
itself by vertical oscillations of the azimuthally 
uniform beam with freqrlcncics w = (n - V) wc, 
where n is an integer, LJ is the verticle bctatron 
wave number, and oc is the circulation frequency. 
The disastrous consequences of this phenomena 
arc obvious - the beam hits the wall. This obser- 
vation prompted a theoretical investigation that 

first treated the effect in an azimuthally uniform 
beam. The treatment included the stabilizing 
effects of spread of the appropriate frequency, 
but the calculation was not self-consistent. L,ater, 
the work was extended to a treatment of bunched 
beams, and this later work included one of the 
spreads expected to contribute to stabilization. 

Azimuthally Uniform Beams 

The physical explanation of the destabilizing 
effect of finite resistance in the walls tnav be 
obtained on the basis of a simple model. dConsider 
a beam of particles with directed velocity in the 
z direction located between two conducting sur- 
faces, as shown in Fig. 2. Suppose the beam is 

CONDUCTING SURFACE 

Fig. 2 Position of displaced beam at a 
given instant of time. 

subject to a small perturbation that shifts its 
position from x = 0 to s = A, with a of the form 

A = <e i(kz-wt) 
9 (5) 

where 5 is a constant. If the conductivity of the 
surfaces is infinite, the force F on the beam in the 
s direction is just proportional to the displace- 
ment so that F = fa, f being a function of the beam 
current and the distance to the walls. Image 
charges in the walls tend to pull the beam toward 
the nearest wall, and the image currents tend to 
push it away. The charges win out so that the 
force is in the direction of the displacement. The 
velocity of the beam in the x direction is v, = - ioa. 
while the particles in the beam have a velogity 
component in the x direction vo = i(kv, - w)n. 
Thus if v,> w/k (i. e., if the particles-directed 
velocity is greater than the phase velocity of the 
wave), the beam and the particles hav-e oppositely 
directed x velocitv. If the wall conductivity is 
infinite the force is 90” out of phase with the 
particle velocity, and no work is done on the 
particles. The wave is therefore stable. If the 
wall conductivity is finite, the image charges tend 
to lag behind, and the force takes the form 
F = (f + ih)a. Now if vz > w/k, the force has a 
component in phase with the particles velocity. 
Energy goes into the transverse motion of the 
particles and the wave is unstable. The energy 
comes ultimately from the directed motion of the 
particles. This effect is a transverse analogue of 
that utilized in the resistive wall amplifier. 

The theory for unbunched beams c,ontains 
two frequencies, U and T:, where I’ is proportional 
to the component of the transverse force that is in 
phase with the beam displacement, and T’ is pro- 
portional to the component that is 90” out of phase. 
Expressions for IT and V tlcpend upon the geometry 
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of the beam and the vacuum tank, but the simplest 
form will suffice for an illustration. Consider a 
beam with uniform density and circular cross 
section of minor radius a inside a pipe with minor 
radius b. The beam is rigidly displaced by an 
amount A, with A of the form given by Eq. (5). 
The expressions for U and V are 

u= - e2 N [1-(ajb)2] 
3 2’ (6) 

2nv0 wco y m. Ra 

V = i e2N/3/nuoymo b3) (8 TO Re w) -l/2 
, (7) 

where ~9 and “co are the average values of v and 
tic, o is the conductivity of the wall material, and 
/3 = wco R/c. The value of the real part of LJ is to 
be taken from Eq. (9). 

In the absence of any spread in v or wc, the 
growth rate (e-folding time) is just V. Except for 
extremely relativistic beams, the condition U >> V 
holds. The criterion for stabilization by Landau 
damping places a lower limit on the spread in the 
quantity S = (n - v)w,. Both v and dc are, in gen- 
eral functions of particle energy E and betatron 
oscillation amplitude p. The lower limit on the 
spread is AS = K]U 1, where K is again a constant 
of order unity whose exact value depends on the 
distribution of particles in E and p. If the con- 
dition U>> V does not hold, the criterion can be 
written as 

AS = K U2 + V2 . J (8) 

The theory predicts that only perturbations 
with n > 1/ are unstable in a uniform beam, and 
the real part of the frequency is given by 

Re iu = (n - v,) wco. (9) 

These predictions are in agreement with experi- 
ment, but the growth rates and AS values required 
for stability are orders of magnitude different 
from those observed in the NIURA accelerator. 
This discrepancy has apparently been explained 
by treating the effect of the clearing electrodes. 
The presence of these circuits, not the resistance 
of the aluminum walls, may be the dominant effect 
in that machine. Changing the termination of the 
clearing electrode circuits has a drastic effect on 
the experiment. 

Equation (8) suggests that is is impossible to 
cure this instability by use of passive circuits 
alone because no passive circuit can cancel the 
effect of the resistance (i. e., reduce V to zero). 
However, walls can be devised that greatly re- 
duce the value of U and even change its sign (see 
Ref. 6). These walls might then greatly reduce 
the spread necessary- for stabilization. It is not 
always convenient to introduce additional energy 
spread in a beam, but it is possible, through the 
use of octupole magnets, to introduce significant 
nonlinearity in the betatron motion. This non- 
linearity contributes to the spread in S by enhanc- 
ing the dependence of v on the betatron amplitude. 

This method of stabilization has been used in 
several machines, and in at least one instance the 
degree of success was extremely gratifying. 

As mentioned earlier, a useful method of 
stabilizing transverse oscillations is by means of 
electronic feedback. This method has been suc- 
cessful in suppressing the instability in both 
azimuthally uniform (unbunched) and bunched 
beams. However, this method should not be 
relied upon too heavily. The effectiveness of the 
method depends to some extent on the slow growth 
rate as well as the rather low frequencies charac- 
teristic of the motion. Shorter wavelength per- 
turbations may not be so easily damped, as the 
frequencies become so high as to tax the elec- 
tronic feedback system. 

Bunched Beams 

The instability as observed in bunched 
beams violates one of the principal results of the 
theory described above, namely, it was found that 
modes with n < v can also be unstable. Another 
experimental observation was that a spread in 
particle energy did not seem to be effective in 
suppressing the instability. It has been postulated, 
but not confirmed theoretically, that energy 
spread is not effective because this contribution 
to the spread in S averages out if the bunch moves 
as a single body. On the other hand, it seems 
reasonable that energy spread would be very 
effective for stabilizing internal motion of the 
bunch. P;o theoretical analysis of internal trans- 
verse motion has so far appeared, although 
strange effects have been observed experimentally. 

Although the resistance in the walls is the 
same ultimate cause of the instability in bunched 
beams, it manifests itself in a slightly different 
way. Consider a particle moving inside a straight 
pipe and oscillating transversely so that its dis- 
placement relative to the axis of the pipe is of the 
form f exp (i v tict). The frequency is below the 
cutoff frequency of the pipe. Because of the finite 
resistance in the walls of the pipe, one component 
of the electromagnetic field of this particle, 
namely the magnetic field orthogonal 

j 
o the axis 

and the displacement, falls off as d-l 2, where d 
is the distance behind the particle.8 This residual 
field at any point does not oscillate in time, but 
has the same phase as that of the displacement of 
the particle when it passed that point. In the 
straight pipe the particle is subject only to the 
fields where it is, and it can be shown that these 
fields are such as to damp the oscillations. 

Now let the pipe be bent in a big circle to 
form an accelerator vaccum tank. The oscillating 
particle will feel the damping influence of the 
local fields, but each time around it also feels the 
effect of the residual fields it left there on pre- 
vious turns. The effect of the residual fields is 
larger than that of the local field. It is easy to 
see that these residual fields will be stabilizing or 
destabilizing, depending upon the change in phase 
of the displacement during one turn around the 
machine. Thus, the condition for stability is a 
condition on the value of v, and this turns out to 
beI<u<I+$, where I is any integer. A 
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simple derivation of this result is given in Ref. 1 
and a more comprehensive treatment is presented 
in Refs. 3 and 4. Unfortunately, no clear-cut 
experiment has been performed to verify this 
result. Such an experiment would require an 
accelerator that contains one bunch, exhibits the 
instability, and is capable of a variation in v 
across a half integer. 

It is interesting to compare the growth rate 
of the instability for a single bunch of K particles 
with that for a uniform beam of the same number 
of particles. If the growth rate for a single bunch 
is calculated neglecting the local fields (a good 
approximation), then the growth rate, Imw, is 
given by 

Imti=Vn\‘2(n-v) lImG/, (10) 

where V is the growth rate for the perturbation 
with n wgvelengths in the uniform beam as found 
rrom Eq. (7). We have used also Eq. (9) in writing 
Eq. (10). The quantity G is a function of v only, with 
I Im GI increasing from zero at v = I - l/2 to unity 
at v = I - l/4. The point is, on the basis of this 
simple theory, if the beam is bunched, the growth 
rate has the same dependence on parameters (ex- 
cept V) as that for an unbunched beam. In practice, 
even the numerical difference is not very great. 

The work of Ref. 4 contains an analysis of 
the instability in beams with many bunches. If 
the bunches are equally spaced and have equal 
number of particles, then a simple selection rule 
holds that determines which modes are stable and 
which are unstable. If there are M bunches, they 
can oscillate coherently in only M normal modes. 
If n is the number of wavelengths around the 
machine (0 5 n L: M), then the modes such that 
I < (v+n)jMi I + a are stable, again with I any 
integer. Of course, no accelerator has such 
equal bunches so the question arises, how differ- 
ent does the number of particles per bunch have 
to be in order that the bunches cease to act 
coherently and go their independent way? A cri- 
terion is presented in Ref. 4, but it depends on 
quantities analogous to the U and V discussed 
above. The quantity U is very hard to calculate 
accurately, even for an unbunched beam. It 
depends on the exact form of the local fields, 
which in turn are a function of the shape of the 
bunch as well as the configuration of the vacuum 
tank. Taken as a whole, the experimental results 
seem to favor independent motion. In particular, 
observations in the NIMROD machine indicate that 
independent motion sets in when a 10% variation 
exists in bunch population. Attempts to calculate 
the spread in II necessary for stability suffer the 
same pitfall. The spread necessary depends 
strongly on that elusive quantity U. 

5. Storage Rings 

The term storage ring applies to two types 
of devices, the first of which is simply a machine 
to store a single beam until it is wanted. This 
type of device may be more subject to instabilities 
than an accelerator because of the perhaps longer 

time the particles are in the machine. But the 
effects are the Same in that the cause of the in- 
stabilities is the interaction of the beam with 
itself and its surroundings through its coherent 
self-fields. 

The second category of storage rings are 
those devices that contain two beams, either in 
one or two rings. Whether there are one or two 
rings, the beams meet head-on one or more times 
each turn. In addition to the interaction of a beam 
with its own fields, it also interacts with the 
coherent fields of the other beam. The self- 
electric and self-magnetic fields of a single beam 
usually tend to cancel each other, resulting in a 
factor y -2 in most of the forces exerted on the 
particles [ e. g., Eqs. (1) and (s)]. But the effects 
of the electric and magnetic fields of the other 
beam do not cancel -they add. Thus the beam- 
beam forces are a factor 272 bigger than the 
single-beam forces. For high-energy particles, 
especially electrons (because y is so large), the 
beam-beam interaction completely dominates in 
determining both the coherent and incoherent 
stability of the particles. As the two beams 
collide, all particles suffer a sudden change in 
their transverse velocity, resulting in a change 
in betatron amplitude. This sudden change can 
cause incoherent loss of all, or a portion of, 
either or both beams. The so-called “low 3” 
concept postulated to alleviate this catastrophic 
loss is discussed in paper E-20 of this conference. 

Effects of the beam-beam interaction on the 
coherent motion of the two beams is the subject 
of an investigation by Sessler and Pellegrini. 
This work is not yet complete, but it reveals 
certain selection rules such as those presented 
above for one beam. Experimentally, it has been 
found that making the v values of the two beams 
sufficiently different suppressed unstable vertical 
oscillations in the Stanford electron storage rings. 

A study of instabilities that result in a dis- 
tortion of the beam cross section has been under- 
taken by Lee, Mills, and Morton, who present some 
results in paper E-14. These distortion modes 
could arise from the interaction of two beams. 
They would be harder to detect than the coherent 
transverse motion, and generally not susceptable 
to stabilization by feedback. 

6. Conclusions 

The theory of coherent beam instabilities is 
not complete, rigorous, or even self-consistent 
in most cases. The theory should be extended 
and widened in scope, and certainly more experi- 
mental results are needed. Experimental data 
regarding these effects is sometimes hard to 
obtain. For one reason, physicists seldom look 
for an instability in their machines; they wait until 
one occurs, then investigate it. But gathering 
data is not easy since the machine may not be 
equipped with the necessary diagnostic tools. 
Accelerators are built to accelerate particles, 
not to study instabilities. There are exceptions 
in the MURA electron accelerator and the new 
electron storage ring at that facility. The latter 
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is being built \vith the express purpose of investi- 
gating beam behavior. 

Hut I believe that the theory is basically 
sound. It can be used, and has been used, as a 
predictive tool. Methods suggested by the theory 
have been successful in suppressing instabilities 
as they occur in numerous machines. The theory 
also offers guidelines for the design of new 
machines. As an example, if a new high-intensity 
machine with a single bunch were to be built, it 
\vould be highly desirable to satisfy the condition 
1<v<1+z. 

Further, theory can display warning signs 
regarding new concepts and new components. In 
this respect, and leading to the subject of future 
work, consider the ceramic vacuum tank. 
Ceramic material has two very attractive features: 
it has excellent vacuum properties, and the con- 
ductivity is so low that even in rapid-cycling 
machines the magnetic guide field easily penetrates 
the vacuum vessel. But to my knowledge little 
thought has been given to the effects of such a 
vacuum tank on the coherent motion of the beam. 
Certainly the existing theory should be extended 
to accommodate these effects. The chief worry 
here is that the ceramic walls are relatively 
transparent to the fields arising from coherent 
motion. Thus the fields reach out into empty 
space or terminate on the lossy material of the 
magnets, with perhaps unwanted consequences. 
There does exist the possibility of coating the 
ceramic on the outside with a thin layer of highly 
conducting material. This layer would hopefully 
let the guide field penetrate, but still contain the 
relatively high-frequency fields from any 
coherent motion. The feasibility of this scheme 
can be determined for any individual machine. 

Another topic that should be investigated is 
the effect of the background gas on beam be- 
havior. Many of the experimental results show 
a pressure dependence of growth rates and 
thresholds, so clearly the “surroundings” of the 
beam must include the residual gas through which 
it passes. This effect is not an easy one to in- 
vestigate - it is, in effect, a beam-plasma 
problem. 

The relatively untouched question of motion 
within a bunch is one not easily handled analyti- 
cally. Some calculations have been performed 
with computers, and with the ever-increasing 
capability of computers and computational tech- 
niques, a great deal more could be done. In 
particular, the postulates regarding the stabiliz- 
ing effect of energy spread within the beam should 
be investigated. 

Devising new walls, circuits, and general 
gadgetry for suppressing known instabilities (as 
well as those yet to be discovered) is a challenge 
to the inventive genius of physicists and engineers 
alike. This very important, and relatively new, 
approach to stability problems will no doubt 
receive much atteiltion in the future. 

References 

1. A. WI. Sesslcr, Proc. V Intern. Conf. 
IIigh-Energy Accelerators, Frascati, 1965 (CNEX, 
Rome, 1966) p. 319. 

2. R. W. Landau and V. K. Xeil, “Negative 
Mass Instability,” l-CRL-14406 Rev 1, 1966. To 
be published in Phys. Fluids. 

3. N. S. Dekanskij and A. K. Skrinski, 
“Coherent Instability of Eh.m~hes of Charged 
Particles,” Inst. .Xucl. Phys. Rept. Novosibirsk, 
I:SSR, 1965 (unpublishecl). 

II. Il. Courant and A. M. Sessler, Rev. 
Sci. Ii&r. u7, 1579 (1966). 

5. L. J. I,aslett, Proc. Intern. Symp. 
Electron and Positron Storage Rings, Saclay, 
1966. 

R. J. Briggs and \‘. I<. Neil, J. Kucl. 
Energ:Part C, 8, 255 (1966). 

I. V. K. Neil and R. J. Briggs, “Stabiliza- 
tion of Nonrelativistic Beams by Means of 
Inductive Walls” UCRL-70133, Sept. 14, 1966. 
To be published in J. Nucl. Energy, Part C. 

8. P. L. Morton, 1’. K. Neil, and A. M. 
Sessler, J. Appl. Phys. 37, 3875 (1966). 

PAC 1967


