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Summary 

Several fas t - t ransfer  systems using kicker 
magnets a re  needed f o r  the  proposed 200-GeV 
Accelerator. A possible system f o r  t r ans fe r  from 
the  in j ec to r  synchrotron t o  the main r ing  using 
stationary,  full-aperture kicker magnets presents 
the most s t r ingent  requirements. The ex t rac t ion  
kicker f o r  the  i n j e c t o r  synchrotron w i l l  be 
about 4 m i n  length, have a 4-by-14-cm aperture,  
and require a f i e l d  of  300 G. For 100% 
e r f i c i e n t  t r ans fe r  the  r i s e  time of  t h e  magnetic 
f i e l d  must be shor te r  than 17 ns, which i s  the  
time between beam bunches, and which i s  nearly an 
order of magnitude l e s s  than the  rise times 
achieved i n  ex is t ing  kicker magnets. 
of the required r i s e  time and the l imi t ed  
length, each magnet i s  divided i n t o  48 modules 
operated as  24 push-pull pairs.  
analyzed as  a short-circuited ferri te-and 
dielectric-loaded transmission l ine .  The 
short-circuited mode of operation ensures t h a t  
voltage on the  magnet i s  applied f o r  only about 
1 2  ns, thus reducing HV problems, and at the  
same time produces a kick twice as g rea t  as can 
be obtained from terminated magnets. Each module 
i s  energized by a tapered coaxial pulse l i n e  and 
switched on with a t r iggered  spaxk gap. 

Because 

Each module i s  

Introduction 

Kicker magnets w i l l  be used t o  t r ans fe r  
bean from the  l i n a c  t o  the  booster synchrotron, 
from the booster t o  the  main ring, and a t  times 
from the  booster and main r ing  t o  the  experimen- 
tC areas. The beam from the l i n a c  i s  in j ec t ed  
i n t o  the  booster with four separate magnets, 
which a r e  turned on r e l a t i v e l y  slowly before 
beam enters  the  booster and which a r e  turned off 
together rapidly a f t e r  the  beam has completed 
follr revolutions. The booster and main-ring 
kicker magnets must provide f i e l d s  t h a t  a r e  
turned on rapidly,  have constant amplitudes f o r  
several  microseconds, and unspecified f a l l  times. 
Tentative spec i f ica t ions  f o r  two o f  t he  k ickers  
are given i n  Table I. 
magnet i s  followed by a magnet with similar 
a2erture and timing requirements which i n f l e c t s  
the beam i n t o  the  main ring, bu t  which has only 
one t h i r d  the  average f i e l d  requirement, making 
it somewhat eas i e r  t o  build. Extraction of 
a l l  o r  pa r t  of the  beam from the main r ing  i s  
the  l e a s t  d i f f i c u l t  of the  kicker-magnet problems 

The booster ex t rac t ion  

* 
the  U. S. Atomic Energy Commission. 

T h i s  work was done under the  auspices of 

because l eng th  f o r  magnets is  ava i l ab le  and 
because the  s i z e  of t he  beam i s  s m a l l .  An 
a l t e r n a t e  scheme f o r  the  booster ex t r ac t ion  magnet 
using a mechanically resonant plunged magnet 
system was inves t iga ted  by M r .  C. E. McDonald; 
the  e l e c t r i c a l  ana lys i s  and magnet configuration 
f o r  this plunged system a re  i d e n t i c a l  t o  those  
used f o r  fu l l -aper ture  extraction, with the  
dimensions o f  the  magnet being reduced, enabling 
fewer sec t ions  of higher impedance t o  be used. 

Table I. Kicker magnet spec i f i ca t ions  
Booster 

Magnet length  (m) 
Gap height (cm) 
Gap width (an) 
Good Yield he ight  (cm) 
Good f i e l d  width (cm) 
Average f i e l d  (G)  
Kick to3 erance (%) 
Rise time (ns )  
Flat top (ps) 
Fa l l  time (ns)  
I ~ X .  r e p e t i t i o n  r a t e  (s-') 

In j ec t ion  Ext rac t ion  
1 4 
4.. 5 4 

1 2  u. 
4.5 1 

12 4 
790 350 

1 L 
any 17 
16 2 
130 any 
18 13 

Booster In jec t ion  

Nagnet systems tha t  must provide a f i e l d  

The 
with a fast r i s e  time are qui te  d i f f e ren t  from 

difference i s  due l a rge ly  t o  the  t r ans i en t  
responses o f  ava i lab le  high-power pulse-forming 
networks. If we ex&ne the cur ren t  wave form 
obtained when a coaxial  l i n e  i s  discharged, we  
ge t  a very fast r i s e  time, an almost f l a t  pulse 
with a small amount of pulse droop given by 

those t h a t  must provide a fast fa l l  time. 

a;id a long fa l l  time a t  the end of the  pulse, 
with the  asymptotic form 

f o r  a coaxial  l i n e  o f  r a d i i  a and b, length 1, 
conductivity 6,  and impedance Zo. 
second equation, t he  time required f o r  a 16 ps 
pulse t o  f a l l  t o  1% of i t s  i n i t i a l  value i s  of t he  
order of 50 ps  f o r  even the l a rges t  diameter 
cables avatlable. 
be t t e r  i n  this respect;  and example obtained wi th  

From the 

A lumped-element line is not 
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a computer program i s  shown i n  Fig. 1. T h i s  
lumped-element l i n e  uses 1 2  sec t ions  and produces 
a cu r ren t  within 0.5% of the f l a t - top  l e v e l  
i n  4 ps, when L1 = 1.75 L. 

To achieve a fast-fall-time magnet, t he  
c i r c u i t  shown i n  Fig. 2 was chosen f o r  the booster 
i n j e c t i o n  system. A t  the  end of t he  pulse, switch 
S, i s  tr iggered, giving an exponential f i e l d  fall- 
t ime ,  delayed by the  length  of cable between 
t h e  magnet and the switch. 
cons tan t  i s  long enough t o  allow this magnet 
t o  be analyzed as a lumped inductance and t o  
u s e  a high permeability f e r r i t e  f o r  t he  r e tu rn  
pa th .  The calculation is  not d i f f i c u l t .  

The 130-ns fall- t ime 

Booster Extraction 

IvIaanet 

After the  beam has been acce lera ted  t o  8-GeV 
i n  the booster, it has a s t ruc tu re  i n  time 
cons is t ing  of 2-ns-wide bunches spaced 17-ns apar t .  
F o r  100% e f f i c i e n t  t r ans fe r  of the  beam t o  the  
main  ring, t he  f i e l d  o f  t he  kicker must r i s e  from 
0 t o  i t s  final value i n  17 ns. The ava i l ab le  
t i m e  i s  a l loca ted  among the  j i t t e r  and rise time 
of the spark gap, junction mismatches, and the  
magnetization time o f  t h e  f e r r i t e - - a l l  of which 
are  lumped under T i n  the  subsequent analysis--as 
w e l l  as the  propagation time through the  magnet. 
F o r  f e r r i t e s  an approxLmate r e l a t i o n  between 
p and the  ferromagnetic resonance frequency i s  
(p-l)fr 4yMs, where MS i s  the  sa tu ra t ion  magnet- 
i z x t i o n  and y i s  the gyronagnetic r a t io .  
p r a c t i c e  this works out t o  g ive  p > 100 f o r  t he  
130-ns fall-time magnets and p = 10 f o r  t he  
17-ns r i s e  time magnets. From the way the  p of 
the  return path en ters  i n t o  t h e  expression f o r  
t he  average y, a y o f  100 i s  approximately as 
good a s  y = OD, but p = 10 i s  not. 
va lue  of p f o r  su i tab le  f e r r i t e s  i s  a handicap 
because the  drop i n  magnetomotive force  i n  the  
r e t u r n  path i s  comparable t o  that, across  the  gap. 
Therefore t h e  gap f i e l d  i s  very sens i t i ve  t o  
magnetizatloq changes mth time i n  the  f e r r i t e .  
Phenomenologically, the r e l a t i o n  of M f o r  an 
appl ied  s t e p  function of H i s  given as an 
exponential, but the ac tua l  increase  of magnet- 
i z a t i o n  with t i m e  i s  more complicated. 

I n  

The s m a l l  

The c i r c u i t  evolved as most s a t i s f ac to ry  f o r  
t he  booster ex t rac t ion  magnets i s  shown i n  Fig. 3. 
Analysis of t h i s  magnet i s  considerably s impl i f ied  
by approximating the magnet by two coaxial  l i n e s  of 
radii a and b with a r a d i a l  wedge of angle 
out  of it t o  form the gap, a s  shown i n  Fig. 4. For 
equal  and opposite exc i ta t ion  of the two coaxes, a 
p lane  o f  symmetry e x i s t s  through the midplane of the  
cap, Each ha l f  o f  t h i s  simplified geometry has a 
capacitance and inductance per u n i t  l eng th  given by 

cu t  

C f  = (Blsl + B2ez)/ln (b/a)-= 2ns/ln(b/a) and 

respec t ive ly ,  which a l s o  define average p and E 
f o r  the TEM-like mode of propagation. 
mode ZO = i l n  (b/a)/2n ] ( p / ~ ) h  and v = ( p ~ )  
are  respectively the cha rac t e r i s t i c  impedance 

L f  = ln(b/a)/L(%/y1) + (Bdpz)] = y In(b/a)/2n, 

For Ys 

and velocity o f  propagation. The m i n i m u m  f i e l d  
i n  the gap i s  B = ~ i / 2 = b .  The length  o f  a 
sec t ion  of magnet o r  module i s  determined by the 
tune i t  takes the  inc iden t  pulse t o  t rave l  twice 
through the magnet and f o r  a l l  of the  r ipp le s  
on the current waveform (caused by input mis- 
matches, spark gap j i t t e r  and r i s e  time, and the 
bandpass cha rac t e r i s t i c s  of the  s t ruc ture)  t o  
pass out of t he  magnet. If we define the  time 
between bunches as T and lwnp all of the above 
r i s e  times a s  7, t he  l eng th  of a module i s  ln= 2 v (T-1. 

The current as  a func t ion  of the  distance 
along the beam ax is  a t  t h e  time the f i rs t  bunch 
t o  be deflected g r r ives  a t  the  magnet i s  shown 
i n  Fig. 3. 
going through a shor t -c i rcmted  magnet from a 
matched puZse l i n e  o f  impedance 20 and charging 
voltage V j the  kick per module 
K, = Vpj [!-~]/2[b ln (b /a ) ]  i s  independent of p 
and E a s  long as the  m a ~ m u m  kick i s  desired. 
nimber of sections required i n  the d i rec t ion  of 
t he  beam t o  provide a t o t a l  kick K i s  n = K/Kn. 
As each o f  these  sec t ions  i s  made up of a pa i r  of 
modules operated i n  a push-pull mode, the  magnet 
i s  made up of 2n modules, each of which i s  
independently excited a t  t h e  proper time through 
i t s  own spark gap and pulse l i ne .  
ava i lab le  t o t a l  length L f o r  the magnet can be 
r e l a t ed  t o  the  length  of an individual module 
an and the length  eo of €he junction f o r  one 
module as L = 4 j n +  ( j 0 / 2 ) ] .  As only the  voltage 
Vpa/2 reaches this junc t ion  and i s  applied t o  i t  
f o r  twice the propagation time through the magnet, 
about 12-ns,the junc t ion  can be made much shorter 
than would be required if it had t o  withhold this 
voltage f o r  the e n t i r e  2.1-ps pulse.2 

If we use I = Vpj/Zo f o r  the  current 

The 

The f ixed  

The junction length  .lo i s  determined by the  
r e f l ec t ions  i t  produces on the current waveform: 
the  r e f l ec t ion  from t h e  inc ident  pulse causes a 
small degrade+-ion i n  r i s e  time, bu t  t he  r e f l ec t ion  
caused by the  pulse as it leaves the  module i s  
r e f l ec t ed  back i n t o  t h e  module and i s  present 
there  a t  the  same time as the  beam. T h i s  second 
r e f l ec t ion  i s  minimized by making the  average 
impedance of the  junc t ion  equal t o  Zo. 

The required kick of 0.13 W/m can be 
achieved with n = 24 sections,  using Vpa= 65 kV, 
a = 3 cm, b = 7 cm, and (T-T) = 10 ns; 
taking 2 and 3 ns respec t ive ly  f o r  spark gap 
j i t t e r  and r i s e  time and 2 ns f o r  junction m i s -  
matches. With t o t a l  l ength  L of 4.1 m, the 
length  per module i s  given as 15 cm. 
required propagation ve loc i ty  v = (2)(15)c4/10 ns = 
c/10 so tha t  a ye  product of 100 i s  necessary. 
From overa l l  considerations of spark-gap erosion 
and power-supply problems, we want t o  use the 
highest  p compatible with the  f a s t  r i s e  times, 
and then ad jus t  the E t o  reach the  desired FE 
product. 
e f fec t ive  permeability obtained by averaging 
azimuthally and longi tudina l ly  i s  only peff = 3.3, 
requiring an e f f ec t ive  Eeff of 30. 

The 

With a f e r r i t e  having p = 10, the 

Ths required average E can be obtained i n  a 
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way tha t  does not g rea t ly  d i s t o r t  f i e l d  l i nes ,  
by a l t e rna t ing  d i e l e c t r i c  and f e r r i t e  laminations 
and then taking su i t ab le  averages. 
f i l t e r  cha rac t e r i s i t i c s  of the  magnet s t ruc tu re  
can be estimated by averaging over a cross 
sec t ion  t o  g e t  average p, and E values f o r  both 
the  f e r r i t e  and d i e l e c t r i c  pieces and working 
out t h e  dispersion r e l a t i o n  from the t r ace  of 
the product of the  transmission matrices of 
the laminae.3 For a composite l i n e  made of 
length  11 of  p l  and c1 a l te rna t ing  with lengths 
l2 of y.2 and E ~ ,  t he  dispersion r e l a t i o n  i s  

The 

where p = W/C, and 
cut-off occurs a t  g (  &+.+.e2) = TI when p l a l  and p2az 
a re  small angles, t he  dispersion r e l a t i o n  
sin ~ i f i e s  approximately t o  w = wc sin(0/2) = w c  
sicfp(Jr+a2)/2] , where wc i s  the  cut-off 
frequency, and 0 i s  the  phase shift per section. 

= w(piEi)$ A s  the  first 

The approximations made i n  the  ca lcu la t ion  
ge t  b e t t e r  as the  s i z e  of the aper ture  i s  
reduced and the length  of the r e tu rn  path ge t s  
shorter,  s o  t h a t  a wavefront can propagate 
over the e n t i r e  cross sec t ion  with approximately 
the same velocity.  While theo re t i ca l ly  the  cut- 
off  frequency can be made a s  high as desired by 
subdividing the  laminations, p rac t i ca l ly  we have 
had t o  consider using d i e l e c t r i c s  with an E of 
only about 100, because of the  f r a g i l i t y  of very 
t h i n  laminations. For a f e r r i t e  of p = 10 and 
thickness of 6 run, and a d i e l e c t r i c  of E = 100 and 
a thickness of 2 mm. we obtain a s t ruc tu re  with 
an impedance of 17 C2 and a first passband cut- 
off  frequency of 575 XHz; a pulse with a 
3-ns rise time should propagate through the  
s t ruc tu re  without noticeable d i s to r t ion  o r  r i s e  
tirne degradation. 
the propagation through the  magnet including 
the aperture involves t h e  use of i n t e g r a l  
equations. 
shown i n  Fig. 5. 

S;rark Gaps 

A more exact description o f  

The ac tua l  magnet configuration i s  

Secause of the  sho r t  i n t e rva l  between bunches, 
every nanosecond i s  valuable, and the  spark gap i s  
the m a j o r  contributor t o  time losses.  
and r i s e  time used i n  the  ca lcu la t ion  were, 3 and 
2 ns respectively,  based on r e s u l t s  obtained with a 
three-electrode gap pressurized t o  10 atmospheres 
and on r e s u l t s  reported i n  the l i t e r a t u r e .  
using higher pressures, r i s e  times under 2 ns can 
possibly obtained, and we a re  constructing a spark 
gap su i t ab le  f o r  pressures up t o  50 atmospheres. 
Tjjpical j i t t e r  obtained so f a r  with high- ower 
sps-k gaps i s  reported t o  be around 5 -n~ , ' ,~  howevq 
with the  tendency t o  increase a f t e r  several  100 000 
pulses o f  operation due t o  electrode erosion. 

The j i t t e r  

By 

The j i t t e r  f o r  t h e  simultaneous f i r i n g  of 
a l l  48 gaps can probably be reduced below 2 ns 
by t h e  use of a pulsed electron beam from a s m a l l  

oae-cavity microwave l i n a c  as proposed by Rudin 
Johnson of L F L  Preliminary experiments were 
car r ied  out on a 3 e lec t rode  spark gap placed 
i n  the beam path o f  7-MeV pulsed l inac .  When 
the  beam was applied simultaneously with a 
t r igger  pulse on the  center electrode, breakdown 
o f  the  gap with a delay of about 6 ns  and a 
j i t t e r  of 0.8 ns was observed, while t r igger ing  
with e i t h e r  t he  voltage pulse o r  the  e lec t ron  
beam alone gave delay time and j i t t e r  one order 
of magnitude higher. 
distance i s  nearly constant f o r  energies above 
100 keV i n  air, and equal t o  about 200 keV/m- 
a'nosphere. If we assume a beam passing through 
l c m o f  air a t  50 atmospheres and two 1 4 1  s ta in-  
l e s s  s t e e l  windows per spark gap, the  energy loss 
p a  gap i s  160 keV. 
thus be s p l i t  i n t o  e ight  p a r a l l e l  beams each going 
through approximately s i x  gaps t o  provide a 
precisely timed source of e lec t rons  t o  i n i t i a t e  
the discharge with low gap-to-gap t o t a l  j i t t e r .  

Field Regulation 

The energy l o s s  with 

A 100-mA, 1-MeV beam could 

The droop i n  the current amplitude and the 
change of magnetization of  the  f e r r i t e  r e tu rn  
path cause the  magnetic f i e l d  i n  the  gap t o  vary 
i n  time. While both of these e f f e c t s  a r e  small, 
they are outsideof the 1% kick tolerance require- 
ment and some s o r t  of compensation must be 
provided. The short ,  2 p s  pulse width r u l e s  out 
ac t ive  regula t ion  from gain-bandwidth l imi ta t ions ,  
and the  high currents required make programmed 
regulation using tubes una t t rac t ive .  A 
s a t i s f ac to ry  so lu t ion  f o r  obtaining a uniform 
kick i s  the use of a pulse l i n e  whose impedance 
may be adjusted as a function of length. However, 
it i s  not necessary that all. pulse l i n e s  be 
adjustable,  as the  i n t e g r a l  of the  magnetic f i e l d  
r a the r  than the  value o f  the  m g n e t i c  f i e l d  must 
be kept constant. 
HV cables may be used t o  supply power t o  most o f  
the modules and a few adjus tab le  pulse l i n e s  may 
be used t o  cor rec t  the  kick. 
li.ne has been t en ta t ive ly  s e t  as a 6-in-OD, 
4.-in-ID coax divided i n t o  30 sections.  Each 
section i s  f i l l e d  with s i l i cone  o i l ,  which i s  
ava i lab le  with d i e l e c t r i c  constants ranging 
continuously from 2.2 t.0 2.8 and which has excel- 
l e n t  high-voltage and high-frequency properties 
A n  analysis of a transmission l i n e  i n t o  which a 
length of l i n e  of another impedance i s  inser ted  
shows that, t o  first order i n  the  difference i n  
impedances, a pulse i s  transmitted through this 
l i n e  without d i s tor t ion ,  and t h a t  such a l i n e  
used as a pulse-forming network w i l l  produce a 
current I = V/Zo ( a )  [t-2( z/v) 1 through the short- 
c i rcu i ted  magnet, where z i s  distance along the 
pidse l i n e ,  A convergent process f o r  f la t ten ing  
out the  kick i s  t o  in t eg ra t e  t h e  magnetic f i e l d  
along the  d i rec t ion  of the  beam and then change 
the impedance of the sec t ion  of l i n e  which 
corresponds t o  an e r r o r  i n  the  kick-versus-time 
picture. 

Lumped pulse l i n e s  or  commercial 

An adjustable pulse 

Conclusion 

The study of the  kicker magnets has been one 
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of f e a s i b l i t y ,  and shows t h a t  an extraction 
system f o r  100% e f f i c i e n t  beam t r ans fe r  from 
the booster t o  the main ring i s  possible. One 
of the major problems i s  the simultaneous 
f5riT of a high number of spark gaps with time 
j i t t e r  under 2 ns. 
problem can be salved with the  proposed t r igge r  
method. 
obtained by using tapered pulse-forming networks. 

The numbers used for the booster ex t rac t ion  

It i s  believed t h a t  t h i s  

The required 1% kick tolerance can be 

magnet were given t o  i l l u s t r a t e  the problem and 
might  change with fu r the r  inves t iga t ions  and the 
final layout  o f  the  in j ec to r  synchrotron. 
g r e a t e r  t o t a l  length f o r  the  magnets and a 
reduced t o t d  kick would be desirable,  leading 
t o  a higher impedance and a smaller number of 
moades.  
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t rys.r1 

Fig. 1. Current pulse through magnet from 12-section 
lumped line. 

Fig. 2. Circuit diagram for booster injection kicker 
magnet. 
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Fig. 3. Schematic circuit of booster extraction system. Fig. 4. Geometry of extraction magnet as used for 
calculations. 

B 

Fig. 5. Fast kicker magnet. 
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