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Summary. Analytical and experimental methods 
to describe precisely, in three dimensions, the 
magnetic fields of beam transport elements will be 
discussed. The influence of the fringing field on 
beam optical properties and magnet design will be 
presented. With appropriate boundary conditions 
the field components are expressed in terms of 
the magnetic potential to arbitrarily high orders 
with empirical coefficients and are grouped in a 
form to avoid the divergence of higher order terms. 
As an accurate description of the true field is 
obtained, a very precise trajectory can be computed 
for a known momentum. In addition, the more useful 
inverse problem of finding the momentum of a parti- 
cle with known input and output trajectory co- 
ordinates is attacked. The trajectory solution 
is expressed as the sum of an analytical part 
plus perturbation terms. The first order solution 
for the momentum is easily obtained and the con- 
vergence of the subsequent perturbation calcula- 
tions is very rapid even for extreme rays. The 
value of this method, with its precise treatment 
of fringing fields, is emphasized by treating 
in detail a wide angle spectrometer (120-in. wide, 
36-in. long, 24-in. gap). The perturbation 
technique shows promise that an accurate instan- 
taneous read-out of the momentum can be obtained 
by employing a modest number of perturbation 
corrections stored in the memory of the computer. 

Multipole Description of Magnetic Field 

The magnetic field of beam transport elements 
can be expressed in terms of the magnetic potential 
expanded in a series of multipolarities about the 
aperture centerline of each element. This discus- 
sion is restricted to elements in which the center 
of the aperture is a straight line, which is true 
for practically all beam transport lenses. Gener- 
ally a median plane of mechanical symmetry occurs 
which also contains the centerline. This is a 
plane of magnetic anti-symmetry: the potential 
W) = e-e>, where 8=0 lies on the median plane, 
and the polar plane is normal to the Z-axis. The 
Z-axis coincides with the aperture centerline. 
For a quadrupole magnet a second plane orthogonal 
to the first and also containing the centerline is 
a plane of mechanical symmetry and magnetic anti- 
symmetry. For a dipole magnet, there is no 
necessity for this left-right mechanical syrmnetry, 
but when it does occur, as in the case of window 
frame dipoles, this plane is a plane of magnetic 
symmetry. 

Let us now outline the potentials and fields 
for quadrupole magnet multipolarities and also for 
dipoles with left-right symmetry. C-type dipoles 
can be treated in this manner but their properties 
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are not described in this paper. 

L(l)1 Let, cp = f i r* sin @fhb,(Z) 
be the magnetic potential expressed in cylindrical 
coordinates: where 2 is the azirruthal axis, r and 
9 are the polar coordinates. There are no cos ~6 
terms since 0(-e) = q(B). 

Substitute inV2 v=O, apply boundary condi- 
tions, and group in powers of r. This reduces the 
number of indeterminate functions fh , p * 

The field components are easily obtained from 
the potential. 

(i) For the circular quadrupole 

[(2)] Br = sin 28 
Li .+ 

2r f~g(k)~4r3(-l/12)fZi:(Z)C... ] 

3 
+sin 68 

li, 
6r5fsB(z$+8r7(-1/28)fii(z)+... 1 

+sin 109~~10rsio~~)~,2P(-~~)~~~(~~...] 

+ . . . 

r,(3)] Be = cos 23L{ 2r%9(z) +2r"(-l/lZ)fij(z)+...1 } 

+cos 68 
i{ 

6r5~fi(z)}+6r7(-1/28)f~~(z)+...] 

+coslO8 10r"f 
1-i 

Io,~(e)}+10r~(-1/44)f~!c(a)+...] 

+ . . . 

[(4)] Ba = sin 28 
II 

r2fk(z) + r4(-1/12)f i,;(z)+. . .] 

+sin 69 
L 

r6fsi(z) + rs(-1/28)fsg iii(z)+. . .] 

+sin 10 
d ~r'";~$z)+ ?(-l/44)5Zi(z)+... 1 

+. . . 
Inside the quadrupole where only two dimen- 

sional terms are found (i.e., f (2) = constant), 
all derivatives with respect tonsnare zero and 
only the bracketed terms [ 3 are present. 

(ii)For the window frame dipole, the same 
procedure plus a transformation to rectangular 
coordinates gives for B , the main component of 
field, the expression: ' 

[(5)1 By = f, _(s)+E((-x2-3y2)/(8)) , f:;(d 

+ (3x"-3Y")f~s(z)1 

+{<x4+6x2y2+5y4)/(24 x S))f;,;(z) 

+((-3x4-6x2y2+5y4)/(16))f;;(z) 

© 1967 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1967



DANBY ET AL: PROPERTIES OF MAGNETIC BEAM TRANSPORT ELEMENTS 443 

+~((-xs-9x4y2-15xzy4 -7y')/(48~24~8))f;;(z) 

+((3x6+15x4ya+5xsy4-7y6)/(40x16))f;;(z) 

+((-5x6+15x4y%5xsy4-7ys)/(24))f~~(z) 

+(7X6-105x4y"+105x2y4-7y6)fJz)3 
> 

The equations for B and B are omitted: 
they will be expressed ?n a di .f ferent form. 

On the median plane (y=o) 

[(6)1 By = flJz)+[(-1/8)f;;(z)+3fsa(z)]x2 

+;(l,24x8)f;;(z)-(3,16)f;<(z)+5$$z)]x4 
, , 

+[(-l/48x24x8)f;f(z)+(3/40xl6)f;(z) 

+(-5,24)f;iJz)+7;1~(z)lxs+... 
, 

Along the aperture centerline B is the 
function f, (2). If f (z) is well gnough 

determined the functi% f'i "(z),fiv(z) and fvi(z) 

can be computed. A knowleite of': 
l?. 

Y 
along 

azimuthal lines at x=x ,x etc., can lead to 

solutions for f a,s(z) ,ndsLC s(z) etc. This 

would complete the three diible components. 

In practice the higher derivatives of fi,l(z) 

and f3 3(z), etc. are quite large even after 
, 

carrying the expansion to an impractical number 
of terms. However, one knows that this is un- 
physical and the field components are in fact 
smooth and continuous. 

Express equation (6) in a series of empirical 
coefficients by grouping in powers of x: 

[(7)] By = fll(z) + a(z)xa+b(z)x4+... 
3 

where a(z) = (-1/8)fit(z) + 3f 
, 3,3 (z) 

and b(z) = (l/24x8)f::(z)+(-3/16)fii$z) 
, , 

+ 5f5 $4 
> 

On the median plane of a dipole magnet of 
good geometry, the empirical functions a(z), b(z), 
etc., are small compared to f=i(z) until well 

outside into the low fringing fields. One can 
now express the three components in terms of 
fll(s) and its derivatives and the empirical 

flnctions only. 

For a window frame dipole, very good accuracy 
is obtained in stopping at two coefficients. 

One obtains: 

[(8)1 By = ~fl,lb)l+fi(-y2 / 2)f;+)l+ 
, 

+ [(x2 7" )a(z)ll 

+ ([(y4/24)f~~(z)1+[((-3x2y2+y4)/(61)aii(z)l 

+ [(x4-6x2y2;4)b(z),~ 

+ . . . 

c(9)] Bx = [(2xy)a(z)]+[(-xy3/3)aii(z)+(4x3y-4xy') 

b(z)]+... 

[(lO)lBZ = iyf~,(z)l+([(-y3/6)f~~~(~)~ 
, 

+ [((3x2y-y3X((3))ai(z>33 

+ Ic(Ys/24x5)f~~(z)l+[((-5xaYa+y~)/ 

(5x3x2))a iiicz);+ 

[((5x4y-10x2y3+y5)/(5))b(z)]]+... 

For a(z) = b(z) = 0, this, of course, reduces 
to the terms in the [ ] brackets. This is the 
two dimensional description of the end fringing 
field. 

One can, if they so choose, consider equation 
[7] as the empirical description of the median 
plane field and take this as the starting point to 
calculate the three components elsewhere. However, 
in the interests of understanding and generality, 
it seems fruitful to develop the field in terms 
of the potential multipolarities. These quantities 
have real conceptual meaning and it is simple to 
combine them as shown. 

Idealized Thick Lens Approximation 

The simplest model (apart from a thin lens 
impulse) is the idealized thick lens with constant 
two dimensional field properties along the azimuth- 
al direction for a length LB which drop discontin- 
uously to zero at the defined ends. For this 
square edged model, only the first and second 
derivative terms in the field expressions will 
contribute to the beam optical properties. The 
first derivative gives an angular impulse, and the 
second derivative a finite displacement, but 
higher terms contribute nothing. Usually only the 
first derivative term is used. It is responsible 
for the simple formula for the vertical focus in 
the end field of dipoles. The trajectory inte- 
gration 

s 

inside 
f n n(z)dz 

outside ' 
is independent of the model to the approximation 
that the end effect is a thin lens angular impulse. 
It is clear that the square edged model gives 
reasonably correct answers for this term, but not 
nearly as good for the second derivative term. 
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Our approach at the AGS to facilitate beam 
transport at the level of this model has been 
based on precise internal "point" two dimensional 
and long coil integrating measurements. 

From the field equations of Section I, in 
the end regions there are contributions from the 
same multipolarities as in the two dimensional 
interior, but with azimuthally varying coefficients. 
There are also terms which contain derivatives 
with respect to 2. At the same azimuthal positions 
relative to each end of the magnet, these terms 
are equal and of opposite signs, provided also the 
transverse positions are the same. 

4 long integrating coil with its axis parallel 
to the z axis, and with its ends in regions of 
zero amplitude of the z derivative terms, responds 
only to the "two dimensional" allowed multipolarit- 
ies. The coefficients of these multipolarities, 
however, are strongly z dependent in the fringing 
fields and no information other than the azimuthal 
integral of each term is obtained. The first order 
term for the axial field B is not detected by the 
long coil, but was shown tg be approximated reason- 
ably well by this model. 

In the transverse plane, the second derivative 
term is poorly approximated by this model. The 
actual effects, however, of the even power terms 
on trajectories are small and usually some cancel- 
lation between the two end effects occurs. 

Many computational programs have been develop- 
ed to trace rays or transfer phase space through 
linear systems, including the effect of finite 
chromatic aberrations. Field aberrations are 
imposed generally in the impulse approximation. 
(Higher order correction magnets such as sextu- 
poles are ignored in this paper. They are small 
perturbations and idealized approximations for 
their properties are quite adequate,) 

For well-designed quadrupolea the internal 
aberrations can be negligible and very insensitive 
to excitation. The end effects are also quite 
insensitive to excitation. A quadrupole with four- 
fold symmetry and a square end on the iron pole 
has only a significant end effect contribution 
from the 60 term. For example a quadrupole with 
an iron length three times its diameter has about 
l/Z% aberration due to both ends, at full radius, 
and falling off as r'. For shorter quadrupoles 
this aberration becomes worse, but a quadrupole 
can be designed so that the 68 contribution from 
the ends is compensated inside. Then for any 
length the beam optical effect of terms other than 
f 
a ,P 

and its derivatives can be made very small. 

Accepting the limitations inherent in this 
idealized thick lens model, many beams using 
general purpose window frame dipoles plus quadru- 
poles have been set up at the AGS on the basis of 
these magnetic measurements. Essentially ideal 
image width transfers are not uncommon. 

To go furtherit requires realistic models for 
end effects. Knowledge of real aberration terms 
can be used to influence design of elements. It 
also permits more accurate trajectory calculations. 

There are types of aberrations which can be 
partially compensated for in a beam, but in general 
aberrations cause dilution of phase space and 
physical image broadening whether you can calculate 
them or not. However, these are applications where 
a detailed knowledge of the effects of both the 
above and of chromatic aberrations is absolutely 
vital. For our purposes the most pressing need for 
better end field information has been for trajec- 
tory calculations in very short window frame dipole 
magnets used as wide angle spectrometers. An 
example of such a magnet has been studied. Desig- 
nated 120D36, it is a window frame magnet of plane 
geometry, with a 120-in. wide aperture which is 
36-in. long and has a 24-in. gap. 

Realistic Description of Magnet Fringe Fields 

Introduction 

To proceed further one must describe the 
functions f (z) either by calculation or by a 
series of f?e?d measurements as a function of z. 
Two dimensional calculations using real ermea- 
bility data can be made. Using the SIBY !t program 
the fringing field of the 12OD36 has been calcu- 
lated. 

The x dependence of the field is small. As 
a result f (2) is very close to its value for an 
infinitelyr&?ide magnet until far out into the 
weak fringing field. The problem can be solved as 
a two dimensional array in the yz plane. 

Table I shows the excellent agreement between 
the measured 12OD36 f (z) and the computed value. 
For narrow width aper%d$es considering f (2) to 
be two dimensional is a somewhat poorer i&roxi- 
mation than in this case but the approximation is 
quite satisfactory for considering the effects of 
design changes. Using a small cross section 
exciting coil package suitable for superconducting 
coils, the effect on f (z) of different excitation 
arrangements has been &&puted. 

The information used to compute the three 
components of field as a function of azimuth was 
obtained by suitable magnetic measurements of the 
functions f n,n(")' 

Field measurements as a function of z and 0 
at fixed r and some computations of realistic 
quadrupole end effects have been made but, as 
described previously, these terms can be made quite 
small. The dipole field is a more pressing problem 
and this paper will describe only dipole properties 
in detail. 

Measurements and Analytical Expressions for 
the Window Frame Dipole Field in Three 

Dimensions 

Equations [S], [9] and [lo] give the three 
field components in a form suitable for precision 
description of a window frame dipole, requiring 
three sets of measurements. 

On the 120036 magnet very precise measurements 
were made using a rigid plane table with an accu- 
rate straight edge and with precision displacement 
blocks in the z direction. The data accuracy is 
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limited by the precision of a nulling potentiometer 
and by search coil positioning errors. The poten- 
tiometer ratios the field against a reference to 
an accuracy of 1 x 10q4 parts, and is "smooth" to 
better accuracy. The positional error in the most 
rapidly changing field region is - 5 x lo-" parts. 
(For a 6-in aperture magnet this error is about 
20 x 10" parts. In such a case, a difference 
pair of coils is used. This reduces appreciably 
the effect of positional error. The difference 
data can be converted to a first derivative.) 

The vertical components of the magnetic field 
f (z) measured along the centerline of the magnet 
c h #be fitted to an analytica I' expression of the 
type 

fl $4 = 
BO 

I 1 + & Y (2) 

where B o is the maximum value of f 
1 ,P' 

at the 

center of the magnet, and Y is a polynomial 
Y 

i 
= C.A.Z!. 

J J = 

A computer program calculates the coefficients 
A. to fit the values Y. to the experimental data. 
TFZ e number of data poiits (about 85) is much larger 
than the number of degrees of the polynomial. The 
least squares principle is used to minimize the 
squared residual. 
is used: 

A polynomial of about 23 d:3rees 
ClR)s being of the order of 1.5 x 10 . 

For a crude calculation there is no need of such a 
high degree polynomial. The derivatives can be 
obtained by direct differentiations. The dipolar 
search coil data when used can be analyzed to give 
the gradient of the field. Numerical integration 
gives the field itself before curve fitting to 

f& 
(2) * A second method is to use a Taylor 

s ?$es to expand the experimental values in higher 
derivatives at the mid-point between the two coils. 
The linear simultaneous equations for the deriva- 
tives are solved by using several consecutive 
experimental data points. The results of these two 
methods agree very well. 

The values of a (z) and b(z) are obtained by 
three sets of single coil measurements, one along 
the centerline and the other two at appropriate 
different values of x. The solution involves 
solving two simultaneous equations. As a(z) and 
b(z) are usually small and slowly varying their 
derivatives with respect to z may be calculated by 
the simple difference method. For higher accuracy 
curve fitting and direct differentiation can be 
used to obtain their derivatives. 

With this data one can generate the three 
components of the field to high accuracy. This 
implies that terms in equations (8), (9) and (10) 
beyond the sixth derivative produce negligible con- 
tributions to trajectories. This assumption is 
directly verified later on. 

An alternative to all this one can measure 
with less accuracy the three components of field 
at many locations throughout the field and devise 
a computer program to calculate trajectories 
through it. For a magnet with very bad symmetries 
so that many coefficients of the type a(z) and b(z) 
are necessary, and their amplitudes are large, 
this is the best procedure. Given a magnet of good 

symmetries, and with highly developed measurement 
techniques this is not the case. From a practical 
point of view the present method was much the 
easiest way to obtain the data. The function fl.(T) 
was measured in a few hours. However, this is ' 
only a small part of the advantage. 

Method of Trajectory Computations 

In rectangular coordinates the equations of 
motion of a particle with mass m and charge e are 

d"x 
[@I.)] m -z = ev 8 

dt 
- ev B 

Y = ZY 

102)l m$?i = z x ev B - ev B x x 

d2 z 
E(l3)] m ;ifz = ev B - ev B 

XY YX 

Let 01 be the angle of a trajectory element 
ds with respect to the horizontal plane X2: i.e., 
the vertical angle. Let 0 be the angle of the 
projection of ds in the horizontal plane measured 
with respect to the 2 axis. The direction of the 
particle is approximately in the positive 2 
direction. 

By changing variables and using a little 
manipulation, equations (ll), (12) and (13) can be 
transformed to equations (14) and (15): 

s 

f 
[(14)] sin 8 f-sin Bi= (e/p) i(tanC?/coso) 

(sin BBx+cosBBe)da - (e/p)r:(By/cos o)dz. 

,J 
[(15)]sin of-sin %i = (e/p>Ji(Bx-tan 8Bs)dz 

If the sin 8-z relation and the sin (Y-Z 
relations are known the formulas for calculating 
x and y coordinates are simply 

[.16)] xf - xi = s; tan 8dz 

[(17)1yf - yi = S: (tan cr/cos@)ds 

Although equations (14) and (15) are too 
complicated to solve analytically they can be 
solved numerically by the following scheme. 

For the first approximation we calculate the 
horizontal projection of the trajectory using 

,*f 
[(18)] sin 8 

f 
- sin ei = (-e/p)ji fi 

, 
$s)de 

.f 
[(19)]xf - xi = Ji tan 0 dz 

This is justified as f (z) is much larger than 
the rest of the terms &f'the B expression and B 
itself is much larger than B f;nd B . Now we ' 
introduce the y-component effect by'assuming a 
projection of the initial values of y and of sin CY 
through the magnet in the vertical direction. This 
projected y and 01, together with the calculated x 
and 8 values, permits calculation of the three 
field components B , B and B . Then one makes a 
first correction tz thg calculated sin 0 by using 
equation [(14)], and to the calculated x-coordinates 
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by using the newly calculated sin 8. 

At this stage we can calculate the vertical 
component sin Q by using equation [(15)]. 

Then calculate the y-coordinate from the 
expression: 

[(20)1 Yf - Yi = f (tan n/cos 9)dz 

Recalculate the field components, angles and 
coordinates successively and repeatedly until the 
elements converge. Actually the convergence is 
very fast. Only two or three stages of re-cal- 
culations are necessary to give a high degree of 
convergence. 

A different approach would be to calculate 
the trajectory from point to point, generating 
the three components of field at each s interval. 
However, the perturbation approach was used so 
that the effect of different terms in the field 
expansions, could be directly tested. This is very 
instructive to magnet design and also to trajec- 
tory computation. 

Results of Trajectory Computations 

Very precise trajectories for a given momentum 
can be calculated for the excitation field at 
which the measurements were taken. However, the 
results apply with reasonable accuracy to a wide 
range of magnet excitation. The proper normaliza- 
tion requires only that 

I-+‘= f. . (z)dz 
J ,m L)l 

be known as a function of excitation. This is 
simply obtained with a long integrating coil 
located on the aperture centerline. 

The effect of inserting and removing various 
terms in the field expressions is informative. 
The largest effect on the trajectory is the inter- 
action of B with the horizontal component of 
momentum, p'cos 2. The sine of the outgoing 
horizontal angle, sin Bf, in particular is very 
insensitive to details of the trajectory. The 
other terms in equation [(14)] are very small in 
their effect. The vertical deflection equation 
[(15)] is intermediate in strength and quite 
dependent on details of the trajectories. 

For finding the momentum of trajectories the 
horizontal deflection is by far the most important 
and easy to measure. For observing magnet optical 
properties the vertical deflection is very 
instructive. For the special case of horizontal 
incidence (sin c(. = 0) we define a vertical focal 
length as yf divided by sin (Y 

E 
. Table II gives 

an example of the variation o this focal length 
with y. The final z values are 84-in. from the 
center of the 120036 magnet. The near identity of 
Columns 1 and 2, a$ of 3 and 4 respectively shows 
that fiv 1 ,(z> and fl 1 (a) which perturb B had no 
effect Gn the vertiGa1 focus. It is alsYo clear 
from comparing the three orders of B that at 
y = lo-in. the series is not converggnt as we are 
ignoring contributions from still higher terms. 
However, it should be borne in mind that this is a 

very short magnet composed entirely of end effects 
and is also a case with a large 34O deflection. We 
are dealing with a small perturbation on a term 
which is itself small. In principle.another term 
f y':(z) could be used. (The term fIrL(z) agrees 

ve;y well for fitting two different iolynominal 
orders to the experimental field data.) However, 
there seems no point in pursuing this since for 
momentum analysis any error resulting from this is 
minute. A similar analysis for an 18D72 magnet 
with a 6-in. gap shows better vertical convergence 
with three terms. 

Table III illustrates the nonlinearity in focal 
length as a function of magnet length. (The 18D9 
is somewhat artificial, in that a real magnet of 
this length would have some field deviations from 
what is found in the ends of a longer magnet.) 

For an.18D72, the nonlinearity due to the 
terms of flil(z) and fV 
of El (2) S-te. 

(z) are smaller than that 
The l&tier is caused mainly by 

the $'?Iependence of B itself. Observing Table II 
again, even for this xxtreme magnet the nonlinear- 
ity in Column 1 using only the term yf' 
about one half of Column 5. 

1 ,1 (z> is 

The vertical deflection depends on tan 6. 
Now sin of is very insensitive to the value of y. 
This appears to support the decoupling of the 
vertical deflection from the main horizontal term. 
However, inside the end region itself sin 0 is 
quite y dependent, and this is where it interacts 
with the vertical deflection. Since the B terms 
are even derivatives, integration through ?he 
entire end indeed gives almost zero contribution. 
This illustrates the value of the present approach. 
Without the ability to separate effects one would 
be inclined tV,attribute $he non-linearity more 
strongly to f,":(z) and fl,l(z). 

, 

The pole ends of dipoles and quadrupoles are 
sometimes flared to reduce the amplitude of higher 
order terms in the end fields: Another advantage 
is that the shape of the field remains more con- 
stant with excitation. However, this technique 
considerably increases the mechanical complexityof 
a magnet and it is easy to over-estimate the 
advantages. It is true that saturation of the pole 
end causes significant shape change with a square 
edge pole. However, even our shortest transport 
quadrupoles show length changes of only 12% to 
pole tip fields of 15 kG and for dipoles 5.6% to 
19 kG. 

As far as the aberrations due to the higher 
derivatives are concerned in the case of the 
quadrupole the influence of 68 and higher aberra- 
tions can be made extremely small. It is true 
that derivatives of f (z) itself can be made 
smaller by this flari$y but at the expense of 
making the end effect regions relatively larger 
compared to the internal regions. 

For the dipole end, the importance of reduc- 
ing the higher terms in the vertical focus can 
be misleading, as seen above. It is true that 
even terms as well as odd will be smaller, however, 
a significant reduction in f:'$z) and its perturb- 

, 

PAC 1967



DANBY ET AL: PROPERTIES OF MAGNETIC BEAM TRANSPORT ELEMENTS 

ing of sin 0 would increase the fringing field 
region. 

Momentum Calculations 

For experimental use of the field description, 
one wants to extract the momentum for given 
experimental trajectory coordinates. A first 
order momentum p 

1 
can be defined as simply 

[(21)] plcos ,Y (sin of - sin e,)=kj\ l(z)dz 
i 3 

(Here N refers to the initial vertical angle, 
and 0 'is the final horizontal angle.) A 
knowlgdge of the initial and final angles makes 
this a trivial calculation. In Table IV p is 

1 
compared with the true momentum p used for calcula- 
ting widely varying trajectories. With one 
exception p is accurate to better than 1 x 10m3 
parts. The'case with - 3 x 10" parts error is a 
very extreme ray. 

It is obvious that the procedure can be applied 
easily between any initial and final z values, 
whether well outside the field or not. 

It should be noted that Table IV does not 
include the effects of a(z) and b(z). To the 

approximation that this wide angle spectrometer 
has no x-dependence very accurate momentum can 
be extracted instantly from a knowledge of the 
angles. For the experimentally less restrictive 
problem of the angles and position known at one 
end and the x-coordinate only known on the other 
end a similar but less accurate procedure can be 
set up. 

The a(z) and b(z) effects are in practice 
small in the 120D36, so that at maximum x they 
contribute about 1%. Over a considerable part 
of the magnet they can be ignored for quite good 
precision. However, by treating these effects as 
perturbations on p , and calculating sample 
trajectories as a Ifunction of the parameters, a 
correction to p can be stored and recalled from 
a memory of reakonable size. 
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Table I Comparison of the Calculated and Experimental Values for the Aperture Centerline Field of the 
120D36 Magnet. 

2 [in.] Calculated F 
Ml l1 

Measured Fll Z [in.] Calculated F Heasured F 
WI [tic' l1 [kG] " 

-18 

-14 

-10 

-8 

-6 

-4 

-3 

-2 

-1 

0 

1 

2 

6 

a 

10 

6.507 6.574 

6.505 6.552 

6.425 6.462 

6.337 6.369 

6.199 6.223 

5.991 6.005 

5.854 5.864 

5.694 5.700 

5.511 5.513 

5.304 5.303 

5.077 5.075 

4.833 4.830 

4.577 4.573 

4.313 4.309 

4.045 4.042 

3.780 3.778 

3.519 3.518 

3.266 3.266 

3.023 3.024 

2.792 2.793 

11 2.573 2.575 

12 2.367 2.370 

13 2.175 2.178 

14 1.996 2.000 

15 1.831 1.835 

16 1.678 1.682 

17 1.538 1.541 

18 1.409 1.412 

20 1.183 1.186 

22 .996 .997 

24 .a41 .840 

26 .713 .710 

30 ,520 .512 

34 .388 .376 

38 .296 .281 
42 ,232 .213 

50 .151 .129 
58 .107 .082 
62 .081 .054 
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Table II Nonlinearity of Vertical Focal Length of 120D36 as a Function of terms in the Field Expansion. 

Y BYl,BZl 
(in) (in) 

-1 -271.29 

-3 -269.68 

-5 -266.51 

-7 -261.86 

-10 -252.39 

BY3,BZl BY2,BZZ 
(in) (in) 

-271.29 -271.22 

-269.67 -268.98 

-266.44 -264.46 

-261.59 -257.59 

-251.31 -242.68 

BY3,BZZ BY3,BZ3 
(id (in) 

-271.22 -211.22 

-268.98 -268.93 

-264.46 -264.07 

-257.58 -255.97 

-242.59 -234.20 

NOTE: Data is for total horizontal deflection of about 34' symmetrically about the center of the magnet. 

BY1 = fll(z) - ya/2 x fll ii (2) 

BZl = y fil(z) 

BY2 = BY1 + y4/24 x f:; (2) 
. . 

B7.2 = BZl - y3/6 x c (2) 

BY3 = BY2 - ye/(48 x 15) x f,“: 

BZ3 = 822 + y5/(24 x 5) x fI1 

Table III Vertical Focal Length as a Function of Core Length for a 6-in. Aperture Window Frame Magnet. 

Y 18D72 MD36 18018 18D9 
(in) (3 (id (in) (in) 

.5 -204.88 -113.12 -68.49 -46.79 
1.0 -204.50 -112.78 -68.12 -46.31 
2.0 -203.07 -111.05 -66.25 -44.06 
2.5 -201.63 -109.25 -64.40 -41.93 
3.0 -199.13 -106.18 -61.36 -38.57 

Data is for total horizontal deflection of about 34O symetrically about the center of the magnet. 

18D72 Actual magnet 72-in. long 
18D36 Field data of 18D72 shortened by 36-i”. in the center of the magnet. MD18 Field data of 18D72 shortened by 54-i”. in the center of the magnet. MD9 Field data of 18D72 shortened by 63-i”. in the center of the magnet. 
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Table IV Comparison for Various Trajectories of a Simple First Order Momentum Calculation with the 
True Value. 

I II III IV V VI VII VIII IX X 

X. 
(it+) 

Y. 
(iB) 

1.07234 15.34 9.575 

1.01777 -29.665 11.09 

1.03438 -13.90 -11.805 

1.01777 -32.20 5.880 

1.00828 -53.815 7.985 

1.01777 -36.475 -15.435 

1.06759 8.740 -4.010 

Sin Bi sin (Yi Xf 
(in) 

-0.144 -0.061 13.250 -1.195 -0.120 0.0652 

+0.147 -0.068 21.718 -0.685 -0.426 0.0690 

+O.O32 +0.085 15.490 2.807 -0.307 -0.0859 

+0.156 -0.050 20.987 -2.714 -0.434 0.048 

+0.291 -0.049 29.127 -0.716 -0.572 0.048 

+o.507 w.105 115.115 5.666 -0.786 -0.092 

-0.132 +0.034 8.824 1.862 -0.133 -0.035 

Explanation of Column Headings 

I. p is mOmenturn used in the trajectory calculation. 

II. Xi is initial X coordinate at -50-i". from center of lens. 

III. Yi is kitial Y coordinate at -50-in. from center of lens. 

IV. Sin ei is initial horizontal angle at -50-i". from center of lens. 

v. Sin oi is initial vertical angle at -50-in. from Center Of lens. 

VI. Xf is final X coordinate at +85-i". from center of lens. 

VII. Yf is final Y coordinate at +85-i". from center of lens. 

VIII.Sin Eif is final horizontal angle at +85-i". from center of lens. 

Sin 9f Sin of 

1.07184 

1.01715 

1.03437 

1.01779 

1.00810 

1.02050 

1.06750 

Ix. Sin z~f is final vertical angle at +85-i". from center of lens. 

x. P is the calculated first order momentum. 1 
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