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Summary 

For regulation and ripple studies of dc mag- 
nets, the essential parameters which must be 
known as a function of dc magnetization and/ or 
frequency are the unit step time constant and 
impedance. An exact value for the unit step time 
constant of a laminated or solid core magnet can 
only be obtained by measurement. It can, however, 
be estimated from the dc time constant which is 
easily computed from the magnet geometry, num- 
ber of coil turns, and the coil resistance. 
Measured unit step time constants andcomputed 
dc time constants are givenfora number of magnets. 
Formulas to compute the impedance of laminated 
core magnets are developed. An empirical 
formula for calculating the impedance of solid 
core magnets is deduced from test data. 

Introduction 

For the design of closed loop regulators for 
magnet power supplies, the unit step time con- 
stant rr of the magnets must be known. Its value 
cannot readily be computed; however, it can be 
estimated from the dc time constant TdC. Know - 
ledge of the magnet impedance at ripple frequencies 
is essential for the design of economical power 
supply filters. For the ring magnet of synchrotrons, 
it is of interest to know the magnet impedance 
over a large portion of the audio range in order to 
estimate the effects of ripple flux and coil reso- 
nances on synchrotron oscillations. 

The power supply regulators usedat the Zero 
Gradient Synchrotron (ZGS) can be adjusted to 
match the time constants of magnets. Thisadjust- 
ment can be made in steps which are multiples of 
two; therefore, it is sufficient to know rr within 
<*50%. Similar tolerances are acceptable for the 
determination of the impedance of magnets at 
audio frequencies. 

The impedance of a laminated ring magnet 
octant of the ZGS will be calculated over the 
frequency range from 10 Hz to 9 kHz for dc mag- 
netizations of Lero and 21. 5 kG. The impedance 
and unit step time constant of solid core bending 

and quadrupole magnets were determined experi- 
mentally. Most measurements were made with 

i:Work performed under the auspices of the 
U. S. Atomic Energy Commission 

zero dc magnetization; a few were made at rated 
current. From these measurements, an empirical 
formula, based on magnet dimensions, will be 
deduced to enable the calculation of L and R for 
frequencies between 60 Hz and 360 Hz. 

Eauivalent Magnetic Circuit 

The relationship between magnet excitation 
current I, field strength H, flux path 1, magnet 
coil turns n, and magnet flux + , is as follows: 

In = $HgdB = Hg Pg t H1 11 + H2 12 t . . . , (1) 

H=L, 
I-‘, PA (2) 

where subscript g refers to the magnet air gap 
and subscripts 1, 2, . . . refer to magnet iron 
sections. 

-9 H 
PO = 4lT x 10 cm = permeability of air, 

IJ = relative permeability, and 
A = area of flux path (cm2) . 

Substituting Eq. (2) into Eq. (1) and multi- 
plying both sides by l/n2 results in 

I 1 
1 

1 Gig= -LL+ L 

p, n2 .4 

2 t... 

g II 0 Fn 1 A 1 

1 
tl Lt... . 

= !I- L1 L2 (3) 
g 

As illustrated by Eq. (3) the magnet induc- 
tance L can be thought of as being the parallel 
connection of the inductances of the different 
magnet sections along the flux path. Each of 
these different inductances has n turns and the 
magnetic properties of its path length. Such an 
equivalent magnetic circuit allows one to compute 
separately the inductances of the various magnet 
sections as a function of dc magnetization and/or 
frequency. 

DC Inductance and Time Constant 

For magnets which have equal areas for air 

gap Ag and iron core A,, the inductance L in 
henrys is 

LL 
L = g ’ =IJ n2 A 

Lg f L 
1 ’ (4) 

0 
C 

Pg t -5 
‘dc 

where 
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EC 
= length of flux path in iron (cm), and 

‘dc = 
relative dc permeability of iron 
under conditions of magnetization 
present in the core. 

If the core area is changing along the flux 
path lengths el, 12, 13.. . , the term Pc/udc in 
Eq. (4) is given by 

P 
C -= A 

k dc 

The dc time constant Tdc is obtained by dividing 
the inductance L from Eq. (4) by the resistance 
RCuof the coil. 

The magnets discussed in this paper use low 
carbon steel as core material. Their relative 
dc permeability, as a function of flux density, is 
shown in Fig. 1. 

Picture Frame Bending Magnets 

The cross section of a picture frame bending 
magnet is shown in Fig. 2a. From the magnet 
dimensions and number of coil turns given and 
the permeability curve of Fig. 1, the magnet 
inductance can be computed for any value of flux 
density with Eqs. (4) and (5). It is assumed that 
the flux density increases linearly from zero at 
the outside of the coil to a constant value at the 
inside of the coil. Therefore, the air gap width 
is taken as the sum of dimensions E t G. The 
air gap length is taken as core length M plus coil 
width G, and the air gap height is the physical 
gap height F. For the iron inductance, the core 
length M is used as effective magnet length. 
Other dimensions for the various iron sections 
were taken from the table of Fig. 2. 

Quadrupole Magnets 

Because of symmetry, the inductance of a 
quadrupole magnet may be computed from one 
quadrant. The total inductance is then four times 
the inductance of one quadrant, which has a fourth 
of the total number of turns. Figure 2b is a 
cross section through a quadrupole magnet: 
dimensions are given in the table. 

Figure 3 illustrates the flux distributioninthe 
gap assumed for calculating the gap inductance. 
The mean gap length of a quadrant is taken as 

1 
P’W’ f PW” 

g = W’ t W” 3 (6) 
where 

1’ = 0. 36 x pole tip radius r (cm), 
e II = l/2 of dimension D in Fig. 2b (cm), 
W’ = difference of dimensions B and C 

in Fig. 2b (cm), and 

W” = dimension C in Fig. 2b (cm). 

The gap area A 
f!i 

is taken as dimension B 
multiplied by the e ective magnet length !,ff. 
(1,ff FT core length plus pole tip radius, cm. ) 
Under these assumptions, the air gap inductance 
becomes 7 

2 A 
L 

g 
= 4xpo 2 -+ 0 

rnLA 
----+. (7) 

g 
t2O 

With reference to Fig. 3, the core inductance 
is computed from the average core area A = c 
WC x P 

eff 
where 

PIWl t P2W2 t P3W3 
w = 

PC 
9 (8) 

C 

and 
PC = I1 t 12 t l3 = average lengthof flux path, 

as 

L = 
TT ‘dc n 

2 Ac /PC lo9 . (9) 
C 

Finally, the Cpadrupok inductance is 

L = LgLc pg + Lc) . 
The inductance‘and time constant of some 

ZGS magnets are given in Table 1. Except for 
the ZGS octant values, there is less than 5% 
change between zero and rated field. Therefore, 
only one value is listed for all but the ZGS octant 
magnets. 

Impedance of Laminated Core Magnets - 

Complex Permeability 

Neglecting capacitive effects, the impedance 
of a coil containing a ferromagnetic core is 2 = 
RtjwL. If we deduct the coil resistance RCufrorn 
R, we have left 

Z = RFe+jWL . 

Resistance RFe is due to core losses (hys- 
teresis and eddy currents). Both the core losses 
and the inductance are dependent on the proper - 
ties and the design of the core, and Eq. (10) can 
be written as 

z = 

where 
7j: = 

2A 
joPoFn 7 

w = 

PL - jpR = relative complex perme- 
ability of core material, and 
2lrf . 

From Eqs. (10) and (ll), the realandimaginary 
parts of the complex permeability are 

R Fe + jwL 
For= w 

0 
2 A-- = 

jwn 7 
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poT= L 
R 

. 
2A-J 

Fe 
2A ’ 

n- 
1 

on 
a 

(12) 

For small amplitude alternating fields such 
as magnet ripple fields (B < 1 G), hysteresis 
losses become negligible and only eddy currents 
and the reversible permeability1 have to be con- 
sidered. Figure 1 shows the relative reversible 
permeability pi- of low carbon steel as a function 
of dc flux density. The complex permeability has 
been computed for homogeneous infinitely large 
sheets having constant permeability and resistivity 
over their cross sections. Its realpart is given by 

d d 
)IL ReF= -= 

6 sinh - t sin - 6 b 

‘r 
2 d d ’ (13) 

r cash Et cos ‘F; 

and the imaginary part by 
d d sinh - - sin - 6 6 __- 
d d ’ (14) 

coshzt cos B 

where 

Pr = relative reversible permeability at 
given dc field for o - 0, 

d = thickness of sheet (cm), 

6 = P 
“fPoPr 

= skin depth (cm), and 

P = resistivity of sheet; for low carbon 
steel p M 15 x 10-6 ncrn 

Ford ~~26, Eqs. (13) and (14) simplify to 

uL pR 6 -= 

‘r -%-=~ * r 
(15) 

Picture Frame Bending Magnets 

If we multiply Eq. (3) by l/j w and use r 
instead of p for the iron core sections, we obtain 

I 1 L,i,l 
jz= 1, = Z 

g z1 z2 

The air gap impedance is 
A 

Z 
g 

= jw pon2 + , 

g 

(16) 

and for a core section we have from Eqs. (11) and 

(12), 

2 A 
Z = wp n 1, 2, . . . 

1,2, x . . * 0 P 
1, 2, . . . 

( IJ.R1 2 
f jvL 

, , . . . 1, 
) 

2, . . . f (17) 

For an octint of the ZGS ring magnet, the 
inductance L and the resistance RFe were com- 

puted and are shown in Fig. 4. If we add the 
coil resistance Rcu in series with RFe and L 
and connect the equivalent coil capacitance C in 
parallel, we obtain the octant impedance as shown 
in Fig. 5. A few of the computed points have 
been checked on an octant and found to agree well 
with the plots shown. It was found that the in- 
crease in copper resistance RCu, due to skin 
effect, was small compared with RFe. 

Impedance of Solid Core Magnets 

A number of pictcre frame bending magnets 
and quadrupole magnets were measured with zero 
dc magnetization and small amplitude sine waves 
of 60 Hz and 360 Hz. From these measurements, 
an empirical formula for the computation of the 
iron contribution ZFe to the magnet impedance Z 
was deduced. With 

’ = ‘g ‘Fe 
z tz 

/( g Fe) 
measured and Zg computed from the gap dimen- 
sions, the corre:ponding ZFe = RFe t j wL, can be 
computed. One then can compute pR and )IL for 
picture frame magnets from 

R 
Fe 

t jUL 

pR+hL= 2 (17a) 
w4rn A c ,i,‘lO9 ’ 

and for quadrupole magnets from 

R t jwL 

uR +jP,= 
onn 2 Y&lO~ ’ 

At very low frequencies, the field penetrates 
the whole core area; while at high frequencies, it 
is concentrated in a thin surface layer of depth 
6. Therefore, it appears that Eq. (15) shouldapproxi- 
mate kLand ~JR . A correction factor K, shown in 
Fig. 6, was obtained by dividing measured values 
by the approximate values calculated with Eq. (15). 
This leads to the empirical formula 

6K . PL = -JI*R = pr d (19) 

In Eq. (19), d is equal to W, for quadrupole 
magnets and equal to WC/ 2 for picture frame 
magnets. 

Equation (19) also applies when the magnets 
are excited at different dc levels. This was 
checked by measuring the impedance of bending 
magnet BM-110 and quadrupole magnet QM-104 at 
60 Hz and 360 Hz for various dc excitations up to 
rated current. The measured and computed values 
were within i 25% of each other. 

Inductance and resistance values for some 
ZGS magnets at 60 Hz and 360 Hz are given 
in Table 1. 
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Time Constant for Step Change in Supply Voltage 

As long as the inductance of the air gap is 
very much smaller than the parallel connected 
inductance of the solid or laminated core, the unit 
step time constant Ts will change little with cur- 
rent. It, therefore, can be measured with a 
voltage step that produces a peak current of only 
a few amperes instead of rated current. 

The unit step time constant will decrease 
with magnet saturation. The ~~ values given in 
Table 1 for zero dc fields were measured by 
applying 2 V to the magnets. The values given 
for BM-110 and QM-104 at rated field strength 
were obtained by suddenly applying rated volt- 
age. In both cases the unit step was applied when 

the magnet field was zero. Eddy current effects 
will always makep rdc, however, TV might be 
estimated from computed values of T 

dc 
as indicated 

by Table 1. 
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Fig. 2 Cross sections and dimensions of 
some ZGS bending and quadrupole magnets 

Fig. 1 Relative values of dc permeability 
pdc and reversible permeability )J.~ of low 
carbon steel as function of dc fluxdensity. 
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Fig. 3 Flux density along lines a-c 
and dimensions used to compute 
impedance of quadrupole magnets 

Fig. 5 Impedance of ZGS ring 
magnet octant at various frequencies 

Table 1 Inductanc e, resistance and time 
constant values of some 7GS Magnets 

Fig. 4 Inductance and resistance of ZGS 
ring magnet octant as a function of frequency 
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Fig. 6 Correction factor K for solid 
core magnets as a function of Peff/d 
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L ,N HENRIES. R IN OHMS, T IN SECONDS 
XMPlDE FROM t/2- LPIMINATIONS, ALL OTHER MAGNETS HA”E SOLID CORES 
--NO YEASbaEO VALUE AVAILABLE 
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