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Summary 

A study t o  determine the  optimum slow wave 
s t r u c t u r e  f o r  a superconducting l i n e a r  accelerator 
i s  being conducted. Vacuum, thermal, and mechani- 
c a l  problems a t  cryogenic temperatures impose 
l i m i t a t i o n s  on such s t ruc tures .  Ultimately, the  
maxi" energy gradient i n  a superconducting s t ru -  
c t u r e  i s  l imited by the  c r i t i c a l  magnetic f i e l d  or  
e l e c t r i c  f i e l d  breakdown. 
pe r iod ic ,  standing-wave s t ruc ture  is  favored. 
Calculations of the dispersion diagram and longi- 
t u d i n a l  e l e c t r i c  f i e l d  p ro f i l e  has been obtained 
from a coupled resonator, normal mode analysis.  A 
comparison i s  made w i t h  room temperature measure- 
ments on stacked t e s t  c e l l s .  The e f f e c t s  of f u l l  
end c e l l s  and of incor rec t ly  tuned c e l l s  on the  
f l a t n e s s  of t he  e l e c t r i c  f i e l d  p r o f i l e  a re  consid- 
e r e d .  The relationship between c e l l  tuning and the  
presence of a stop band i n  the  dispersion curve i s  
shown. Problems of coupling t o  a high Q supercon- 
duc t ing  s t ruc ture  and tuning the  frequencies of 
s ec t ions  i n  a multi-section l i nac  a r e  considered. 
Resul t s  a re  given fo r  t h e  Q, t he  dispersion diagram, 
and the  energy gain fo r  a 952 MHz lead-plated super- 
conducting s t ruc ture  5 f e e t  i n  length operating near 
2'K. 

A t  present a a/2, b i -  

I. Introduction 

The pr inc ip les  underlying t h e  design and mea- 
surement of slow wave s t ruc tu res  su i t ab le  f o r  use 
i n  a superconducting e l ec t ron  l i nac  have many poin ts  
i n  common w i t h  the design and measurement of room 
temperature structures.  There a re ,  however impor- 
t a n t  differences. The cryogenic environment i s  an 
obvious f ac to r  whichmust be considered i n  the case 
of a superconducting s t ruc tu re .  Other fac tors ,  such 
a s  suscep t ib i l i t y  t o  beam break-up*may be l e s s  ob- 
v ious .  These and other design c r i t e r i a  f o r  such 
s t ruc tu res  a re  considered i n  t h e  next section. It 
w i l l  be shown tha t  a rr/2 mode bi-periodic,  disk 
loaded s t ruc ture  meets many of t he  requirements f o r  
an e f f i c i e n t  accelerator.  Some r e s u l t s  of a theor- 
e t i c a l  analysis of a s t ruc tu re  of th is  type a re  
presented b r i e f ly  in  sec t ion  111. 
measurements of the dispersion curve, f i e l d  p ro f i l e ,  
and shunt japedance a r e  discussed, and examples 
g iven  for  t w o  bi-periodic s t ruc tures ,  one 5 f e e t  
long and one 1* f e e t  long operating a t  952 MHz. 
Resul t s  obtained during l o w  temperature operation 
.are presented. 

I n  sec t ion  I V  

11. Design Cr i t e r i a  f o r  Superconducting S t ruc tures  

The Q of a superconducting acce lera tor  can be 
expected t o  be on t h e  order of 105 t imes t h a t  of a 
conventional acce lera tor .  It i s  impractical  t o  in -  
c r ease  the physical length or decrease the  group 

9 
Work supported i n  pa r t  by the  U.S. Office of 

Naval Research, Contract [Nonr 225(67)]. 

veloc i ty  of a t rave l ing  wave s t ruc ture  by t h i s  
l a rge  f ac to r  t o  maintain the  a t tenuat ion  length 
c lose  t o  unity.  A superconducting acce lera tor  
sec t ion  must then be operated a s  p a r t  of a reson- 
an t  r i ng  or  a s  a standing wave cavity.  
p l ex i ty  of a cryogenic r ing  eliminates t h i s  device 
f r m  serious consideration a t  present.  

I n  any accelerating s t ruc tu re  it i s  des i rab le  
t o  make t h e  shunt impedance as la rge  as possible.  
However, some shunt impedance may have t o  be sac r i -  
f i ced  i n  order t o  s a t i s f y  other c r i t e r i a .  Specifi-  
ca l ly ,  t h e  existence of a c r i t i c a l  magnetic f i e l d  
and a l imi t ing  e l e c t r i c  f i e l d  must be taken i n t o  
account. Measurements1 have shown t h a t  the  rf c r i -  
t i c a l  magnetic f i e l d  i s  about equal t o  the  dc c r i t i c a l  
f i e l d  a t  microwave frequencies. I n  a t y p i c a l  lead- 
p la ted  standing wave s t ruc ture  t h i s  w i l l  l im i t  t he  
energy gradient t o  about 5 MeV per foot .  The l i m i t  
w i l l  be two t o  three times t h i s  value i n  a niobium 
s t ruc ture .  

Atpresent e l e c t r i c  f i e l d  break down imposes a 
more severe l i m i t  on the  energy gradient.  Limits 
on t h e  e l e c t r i c  f i e l d  strength a r i s e  from severa l  
sources. A t  r e l a t ive ly  l o w  f i e l d s  multipactoring 
can occur. The problem of suppressing multipactor- 
ing  i n  a superconducting s t ruc ture  seems t o  be 
s imi la r  t o  the  problem i n  conventional s t ruc tures .  
Materials with a low coef f ic ien t  of secondary elec- 
t r o n  emission a re  desired, and s t ruc tu res  w i t h  
c lose ly  spaced p a r a l l e l  surfaces should be avoided. 
Fortunately, lead i s  favorable i n  the  first respect,  
having a secondary emission coef f ic ien t  6 = 1.1. 
The importance of t h i s  coef f ic ien t  i s  shown by the  
f a c t  t h a t  some s t ruc tures  when lead p la ted  did not 
multipactor,  but showed evidence of severe m u l t i -  
pactor when plated with t i n  (6 = 1.35). 
respec t  niobium, with 6 = 1.2, i s  intermediate. 
The f a c t  t h a t  closely spaced p a r a l l e l  surfaces 
should be avoided implies t h a t  a superconducting 
s t ruc tu re  should be terminated i n  f u l l  end cav i t i e s .  

A t  r e l a t i v e l y  high e l e c t r i c  f i e l d  s t rengths  
many c a v i t i e s  tes ted  so f a r  have shown evidence of 
e l ec t ron  loading. The probable source of the  load- 
ing i s  f i e l d  emission current from sharp 'khiskers" 
on t h e  cavi ty  surface. This f i e l d  emission current 
serves a s  a mechanism f o r  converting rf power i n t o  
heat d i ss ipa ted  a t  the low temperature. The power 
dissipatTon from t h i s  source becomes in to l e rab le  
when a l e v e l  of about one watt  per foot i s  reached. 
Since t h e  f i e l d  emission current increases exponen- 
t i a l l y  with increasing f i e l d  strength,  a f a i r l y  
r i g i d  l imi t  i s  imposed on t h e  peak f i e l d  s t rength  
Ep ex i s t ing  anywhere on the  surface of t h e  s t r zc tu re .  
To obtain the  highest average energy gradient E it 
i s  therefore  desirable t o  optimize the  r a t i o  E/Ep 
f o r  t he  s t ruc ture .  This favors t h e  choice of a 
s t ruc tu re  without nose cones on the  loading d iscs .  
Although nose cones do s ign i f i can t ly  r a i s e  the shunt 
impedance of a s t ruc ture ,  ca lcu la t ions  done a t  Los 
Alamos2 have shown t h a t  a 10% increase i n  the  shunt 
impedance i s  accompanied by a doubling of the  peak 

The com- 
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e l e c t r i c  f i e l d  a t  the  surface.  
Fabrication and e l ec t rop la t ing  considerations 

have a bearing on t h e  choice of s t ruc ture .  Elec- 
t rop la t ing  i s  f a c i l i t a t e d  i f  the ins ide  corners of 
the cavi t ies  are we l l  rounded, i f  t he  beam aperature 
i s  l a rge  enough t o  i n s e r t  bagged p l a t ing  anodes, and 
i f  the d isks  a re  tapered t o  f a c i l i t a t e  the  escape of 
gas bubbles during e l ec t rop la t ing  and the  drainage 
of the various cleaning, p l a t ing  and riilsing baths.  
It i s  convenient t o  be ab le  t o  p l a t e  the  individual 
ce l l s  separately,  and then stack them together using 
indium gaskets t o  form a completed section. The 
n/2 mode, i n  which a l t e r n a t e  c e l l s  a re  not excited 
and the indium j o i n t s  can be made i n  a region of 
zero current,  i s  thus indicated.  

n/2 mode do not cont r ibu te  t o  acce lera t ion ,  t h e  
shunt impedance can be improved by placing these 
c e l l s  off to the  s ide  (e.g.  t he  Los Alamos side- 
coupled s t ruc ture)  or by shortening the  length of 
these c e l l s  i n  a d i sk  loaded s t ruc tu re .  We have 
chosen t h i s  l a t t e r  a l t e r n a t i v e  since it i s  simple 
t o  fabr ica te  and e l ec t rop la t e .  

SeveraJ cryogenic problems must be considered 
i n  the design of a s t ruc tu re .  The geometry must be 
chosen such t h a t  thermal impedance i n t o  the  helium 
bath i s  low from a l l  surfaces where power i s  d i s s i -  
pated. For example, it would not be desirable t o  
have magnet-c coupling holes t h a t  t ake  up a la rge  
f rac t ion  of the  circumference of a loading disk,  
thereby :)locking the  flow of heat from the  inner 
portions of the  disk.  The body of t he  s t ruc ture  
must o f  course be made of ma te r i a l  with a high 
thermal conductivity a t  l i qu id  helium temperatures 
such a s  OFHC copper or high p u r i t y  aluminum. I n  
addition since operation below the  lambda point i s  
plamed, a l l  j o in t s  and gaskets must be wel l  de- 
signed and vacuum t i g h t  t o  prevent superfluid helium 
leaks. 

In  a multi-section l i nac ,  t he  frequences of t he  
sections must be matched t o  about one par t  i n  109. 
Since t h i s  cannot be accomplished by pretuning a t  
room temperature, an ad jus tab le  tuner capable of 
pull ing the frequency of the  s t ruc tu re  by about one 
p a r t  i n  105 while a t  helium temperatures i s  needed. 
Calculations have shown5 t h a t  f o r  t h e  n/2 mode t h i s  
can be accomplished by tuning a s ing le  cavi ty  of t he  
structure,  without se r ious  d i s t o r t i o n  of  the  f i e l d  
p ro f i l e .  

It w i l l  a l s o  be des i rab le  t o  ad jus t  the coupl- 
ing  t o  t he  cavi ty  i n  order t o  allow e f f i c i en t  oper- 
a t ion  over a wide range of beam current.  There a re  
m a n y  possible mechanisms f o r  accomplishing t h i s ,  
such a s  the system of th ree  matching plunger shown 
i n  Fig. 1 for  t h e  Stanford 5-foot l inac .  However, 
a variable length sec t ion  of waveguide below cut-off 
seems more a t t r a c t i v e .  
section could be varied using a moveable d i e l e c t r i c  
rod, o r  by making t h e  cut-off sec t ion  out of a 
bellows using a moveable d i e l e c t r i c .  

perconducting l i nac  s t ruc tu re  t o  supress the  
exc i ta t ion  of t he  t ransverse  def lec t ion  modes which 
can lead t o  beam break-up. One way t o  accomplish 
t h i s  i s  t o  ad jus t  t he  length  and diameter of the  
beam coupling holes a t  each end of an acce lera tor  
section so t h a t  t he  holes  a r e  below cut-off and 
have suf f ic ien t  a t tenuat ion  t o  contain the  funda- 
mental accelerating mode, but y e t  w i l l  propagate 

Since the  unexcited c e l l s  i n  the standing wave 

The length of the  cut-off 

An e f f o r t  must be made i n  the  design of a su- 

power i n  the  higher order def lec t ion  modes out of 
the  section. 

the type of break-up i n  which a s ing le  sec t ion  can 
a c t  a s  an o s c i l l a t o r  with i n t e r n a l  feedback, and 
the  type observed more recent ly  i n  long, m u l t i -  
sec t ion  l inacs .  Helm' has calculated t h a t  f o r  t h i s  
l a t t e r  kind of break-up the  Q f o r  t he  def lec t ing  
modes must be l e s s  than lo6 i f  a cur ren t  of 1 ma i s  
t o  be obtained i n  a 500 foot l i nac .  The s t a r t -osc i -  
l l a t i o n  current for the  former type of break-up can 
be estimated using a r e l a t ion  adapted from a calcu- 
l a t i o n  by Gluckst ern4. 

Two types of beam break-up must be considered, 

Here 
and r/Q za 75/A has been assumed f o r  t he  f i r s t  
def lec t ion  mode. U s i  L = 300 cm, A = 30 cm, 
Vo = 30 MeV and Q = 13, a break-up current of 3 ma 
obtained. In  the case of a capture section, where 
t h e  energy va r i e s  from a l o w  value t o  the f i n a l  
energy of 30 MeV, a reduction i n  the  break-up cur- 
r en t  by about a f ac to r  of 3 t o  I = l ma can be 
expected. 
t h a t  heavy loading of t he  higher order def lec t ion  
modes i s  required. 

Vo i s  the  beam energy, L the  sec t ion  length, 

For e i t h e r  type of break-up it is  evident 

111. Theory 

A f a i r l y  good understanding of a standing wave 
s t ruc tu re  can be obtained through the  use of a model 
i n  which the cav i t i e s  a r e  assumed t o  be lumped re- 
sonant c i r c u i t s ,  coupled t o  each other through t h e i r  
mutual inductances5. This model gives information 
only about the  r e l a t ive  exc i ta t ion  of each cavity,  
which i s  assumed t o  be proportional t o  t h e  current 
i n  the  c i r c u i t  representing the  cavity,  and says 
nothing about the  s p a t i a l  var ia t ion  of t he  f i e l d  
within a cavity.  

In  s p i t e  of i t s  l imi ta t ions ,  t he  model has been 
very usefu l  i n  studying such th ings  a s  the  e f f ec t  of 
machining tolerances on the  f i e l d  p r o f i l e  of a s t ruc-  
t u re ,  the  e f f ec t  of next nearest  neighbor coupling, 
and the  e f f e c t  of a difference i n  frequency between 
the  even and odd cav i t i e s  i n  the  bi-periodic struc- 
t u r e .  

and when a l l  of t he  cav i t i e s  have the  same resonant 
frequency, the  model i s  pa r t i cu la r ly  simple. The 
normal modes calculated f o r  a s t ruc ture  with f u l l  
end cav i t i e s  and f o r  a s t ruc ture  w i t h  h a l f  end cay 
i t i e s  a r e  given below, f o r  comparison with Fig. 4 .  

When there  i s  no next nearest  neighbor coupling, 

For the  ha l f  cav i ty  termination, 

((u,/uq)' = I& cos(nq/N) q = 0,1,2,. . . ,N (1) 

E: = Eo cos(nnq/N) n = 0,2, ..., N (2)  

E: = Eo Jm cos(nxq/N) (2 '  n = 1,3, .. . ,N 

and f o r  the  full  cavi ty  termination, 

(ao/.) )2 = I& cos(nq/N+l) 

E: = Eo sin(nxq/N+l) 

q = 1,2,. . . ,N 

n = 1,3,. . . ,N 

(3) 

(4) 
9 

E: = Eo sin(nxq/N+l) n = 2,4, ..., N ( 4 ' )  
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I n  t he  above, co, i s  the  resonant frequency of 
an ind iv idua l  cavity, k i s  the coupling coef f ic ien t  
between cavi t ies ,  E2 r e fe r s  t o  the e l e c t r i c  f i e l d  
i n  t h e  n th  cavity i n  the  4th mode, and N i s  the  
number of f u l l  cav i t ies  i n  the  s t ruc tu re .  For a 
s t r u c t u r e  with a half  cav i ty  a t  each end, the  t o t a l  
number o f  cav i t ies  i s  N+1. The coe f f i c i en t  
J f i  i s  the  square root  of t he  r a t i o  of the  en- 
e rgy  i n  t h e  even cav i t i e s  t o  the  energy i n  the odd 
c a v i t i e s  when the peak f i e l d  i n  each cavi ty  i s  the  
same- It r e f l e c t s  the f a c t  t h a t  t h e  energy d i s t r i -  
b u t i o n  among cavi t ies  i s  unaffected i n  a pa r t i cu la r  
mode by t h e  shape of the  cavi t ies ,  as long a s  the  
frequency i s  constant. 
ev iden t  i n  the  curve labeled '11/20 mode' i n  Fig. J+. 

For t h i s  curve Eqs. (4) apply with q = 1. 

This behavior i s  pa r t i cu la r ly  

IV. Measurements 

Microwave measurements were made, both a t  room 
temperature and a t  l i qu id  helium temperatures, on 
t h e  19 c e l l  s t ruc ture  shown schematically i n  Fig. 1. 
This s t ruc ture ,  operating near 950 MHz,is the  accel- 
e r a t i n g  sec t ion  fo r  a f ive  foot superconducting t e s t  
l i nac .  A block diagram of t h i s  acce lera tor  i s  shown 
i n  F i g .  2. Detailed room temperature measurements 
were a l so  made on a 5 c e l l  s t ruc tu re  t o  be used f o r  
Q a n d  e l e c t r i c  f i e l d  breakdown t e s t s .  

Measurements were f i r s t  made t o  determine t h e  
resonant frequency of each ind iv idua l  c e l l  i n  the  
s t r u c t u r e .  The c e l l s  were fabr ica ted  from rings 
machined on a t r ace r  l a the  from copper forgings. 
Each r ing  consisted of ha l f  a short  c e l l  and half  
of a long c e l l  with a loading d isk  between. The 
resonant  frequency of each half  c e l l  was measured 
by clamping a shorting p l a t e  containing a magnetic 
coupling probe across one end of a r ing ,  leaving 
t h e  coupled half  c e l l  on the  other s ide  of the r ing  
open t o  a i r .  The resonant frequency could be mea- 
s u r e d  i n  t h i s  manner t o  an accuracy of about %10-5. 
This  can be compared with the  machining tolerance 
of about &lo-5. To obtain the  resonant frequency 
of each  f u l l  c e l l ,  the  frequencies of the  two com- 
ponent  half  c e l l s  were averaged. This proved t o  be 
more accurate than measuring the  resonant frequency 
of t h e  f u l l  c e l l  d i r ec t ly  because of the  perturba- 
t i o n  produced i n  attempting t o  couple Bo the  elec- 
t r i c  f i e l d  i n  the region of t h e  coupling hole. 

The resonant frequencies of t h e  c e l l s  i n  the  
19 c e l l  s t ruc ture  were found t o  l i e  within a spread 
of 0.2 MHz. However, t he  average shor t  c e l l  f r e -  
quency was 0.4 MHz lower than the  average long c e l l  
frequency. This produced the 0.45 MHz gap i n  the  
d i spe r s ion  curve, which is  shown i n  Fig. 3. 
f i v e  c e l l  s t ruc ture  was machined more accurately; 
bo th  long and short c e l l s  d i f fe red  i n  frequency by 
l e s s  than 0.1 MHz. 

frequency e r ro r  on the  a x i a l  e l e c t r i c  f i e l d  p ro f i l e  
and t o  compare these measurements wi th  the  theore- 
t i c a l  r e su l t s  i n  section 111. The f i e l d  p ro f i l e  
was determined in  the  usual way by pu l l ing  a die- 
l e c t r i c  bead through the  s t ruc ture .  
accuracy Of t h e  measurement of t he  e l e c t r i c  f i e l d  
i s  2 1$ of the  maxi" value. 
s t r u c t u r e  the f i e l d s  i n  the  excited c e l l s  were con- 

The 

It i s  in t e re s t ing  t o  examine the  e f f e c t  of t h i s  

The estimated 

For t h e  19 c e l l  

mistuiied i n  t h i s  s t ruc tu re .  The f i e l d s  i n  the  ex- 
c i t e d  c e l l s  w e r e a d e r  
If the  long and short  c e l l s  had been tuned t o  t h e  
same frequency, t h e  ana lys i s  outl ined i n  the  pre- 
ceeding sec t ion  p red ic t s  a f l a t n e s s  of .OOl$ f o r  
t h e  excited c e l l  f i e l d ,  and an unexcited c e l l  f i e l d  
l e v e l  of 2$. In  the  5 c e l l  s t ruc tu re  the  end c e l l s  
were tuned more accura te ly  and the  f i e l d  l eve l s  
were measured t o  be 2% and 3% higher than the  f i e l d  
i n  the  center c e l l ,  while f i e l d s  i n  the  two unexcited 
c e l l s  were l e s s  than the  accuracy of the  measurement. 
A p l o t  of t he  f i e l d  p r o f i l e  i s  shown i n  Fig. 5 f o r  
t he  cases where the  s t ruc tu re  i s  terminated i n  f u l l  
end c e l l s  and i n  ha l f  cav i t i e s .  It i s  seen t h a t  
t h e  f i e l d  p r o f i l e  looks very much l i k e  a s ine  wave 
(except i n  t h e  end c e l l s ) ,  ind ica t ing  a fundamental 
space harmonic component close t o  unity.  Note a l s o  
t h a t  t he  e l e c t r i c a l  length of the  s t ruc ture  termin- 
a ted  i n  f u l l  end c e l l s  i s  about 1* wavelengths, 
whereas the physical length i s  1/6 wavelength shor te r .  
Thus the  s t ruc tu re  appears t o  be terminated i n  an 
"open" located a t  t h e  center of phantom unexcited 
c e l l s  adjacent t o  t h e  end c e l l s .  

This behavior i s  brought out more c l ea r ly  i n  
Fig. 4 where the  f i e l d  p r o f i l e s  or the  11/20 and 19 
3/20 modes a r e  p l o t t e d  f o r  t h e  19 c e l l  s t ruc tu re .  
Note t h a t  amplitude of t he  p r o f i l e  has a s ine  modu- 
l a t ion ,  f a l l i n g  t o  zero a t  each end of t h e  s t ruc ture .  
This behavior i s  predicted by Eqs. (4)  f o r  t he  case 
of a s t ruc ture  terminated i n  f u l l  end c e l l s .  Note 
a l s o  t h a t  f o r  t he  11/20 mode the  f i e l d s  i n  the  shor t  
c e l l s  a r e  grea te r  than  the  f i e l d s  i n  the  long ce l l s ,  
as expected from Eq. ( 4 ' ) .  

5$ of t he  excited c e l l  l e v e l .  

Figure 3 shows t h e  d i s  e rs ion  curve both a t  
room temperature and a t  4.2 g K. The pr inc ip le  con- 
t r i b u t i o n  t o  t h e  frequency s h i f t  i s  the  thermal 
contraction of copper. 
of f u l l  end c e l l s  p red ic t s  t h a t  t he  slope of t he  
dispersion curve should not be zero a t  t he  11/20 
and 19 11/20 modes. This was measured experimentally 
as shown i n  Fig. 3. The same s t ruc tu re  was measured 
with ha l f  end c e l l s  and i n  t h a t  case did show appru- 
ximately a zero slope i n  t h e  neighborhood of the  0 
and 11 modes, a s  expected from Eq. (1). 

ple ted  s t ruc ture  a s  i l l u s t r a t e d  i n  Fig. 1. Brazed 
j o i n t s  were made i n  t h e  center  of each long c e l l .  
The r e su l t i ng  un i t s ,  cons is t ing  of a long c e l l  with 
ha l f  a short  c e l l  on e i t h e r  end, were e lec t ropla ted  
and then stacked toge ther  w i t h  indium gaskets. The 
assembled s t ruc tu re  was then placed i n  the  dewar as 
indicated i n  Fig. 2 and cooled t o  l i qu id  helium 
temperatures. Using t h e  r f  c i r c u i t r y  shown i n  the  
figure,  the  Q of the  s t ruc tu re  was measured by the  
decrement method a t  l o w  power l eve l s .  An unloaded 
Q of 2.5X108 was obtained a t  2OK. 

t o r  sec t ion  can be wr i t t en  a s  

Equation (3) f o r  the  case 

The ind iv idua l  r i ngs  were assembled i n t o  a com- 

The energy ga in  of a superconducting accelera- 

where r i s  the shunt impedance per  un i t  length,  
L i s  the length, and P the  input power. The con- 
s tan t  A i s  uni ty  f o r  r e l a t i v i s t i c  e lec t ron  energies. 
I n  a capture section, however, possible phase s l i p  
must be taken i n t o  account and A w i l l  be l e s s  than 
uni ty .  s t a n t  t o  within the  accuracy of t he  measurement, 

except  fo r  t h e  end c e l l s  which were 4% and 7 $  higher. 
The frequencies of the  end c e l l s  were somewhat 

The shunt impedance can be obtained from a 
measured value of the  unloaded Q and from the r/Q 
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r a t i o  given by 

Here A. i s  the  f r ee  space wave length, L the  elec-  
t r i c a l  length of the  s t ruc ture ,  and 
frequency per turbat ion when the  per turbingbead 
i s  located a t  a f i e l d  maxi" where the  space har- 
monics We Su"d. The r a t i o  of t he  fundamental 
space harmonic component a, t o  the  sum Zan of a l l  
the harmonic cmponents i s  obtained from a Fourier 
ana lys i s  of the  f i e l d  p ro f i l e .  The constant K i s  
t h e  e f fec t ive  volume of  the  bead and i s  obtained 
from the  frequency s h i f t  f o r  t he  bead i n a  %lo 
ca l ibra t ion  cavi ty  of known dimensions. For the  
bi-periodic s t ruc ture  under measurement here a 
value of (ao/Zan)* = .966 was obtained. The r/Q 
was measured t o  be 920 ohms per  meter, which i s  
about 20$ higher than expected from a s ingly  per- 
i od ic  n/2 mode standing wave s t r ac tu re .  A room 
temperature Q of 23,500 was obtained f o r  the  copper 
s t ruc tu re  before lead p la t ing .  

Some of the  propert ies  of t he  higher order 
t ransverse modes -;exe measured. 
t he  TMll- l i k e  def lect ion mode extends from 1359MHz 
t o  1436 MHz with a 46 MHz gap a t  t h e  n/2 mode. The 
v = c l i n e  crosses the  dispersion curve for  t h i s  
mode a t  & = O.i'2n. A t  t h i s  point  a non-zero vg 
of -0.005~ i s  obtained. Thus i f  s e l ec t ive  loading 
can be provided a t  some point i n  the  acce lera tor  
sec t ion  fo r  t h i s  mode, there  would be no problem 
i n  suppressing the  Q t o  provide pro tec t ion  against  
beam break-up. However, s t i l l  higher order def lec-  
t ionmodes must be carefu l ly  checked before the  
design of such a s t ruc ture  i s  considered f i n a l .  

6W/u the  

The passband f o r  

P 

V. Conclusion 

I n i t i a l  t e s t s  have been made using the  19 
c e l l  s t ruc ture  a s  a f ive  foot s?rperconducting 

FOR W l A B L E  VZKtSHT 
WR 770 
WAVEGUIDE 

STEP JOINT-/ ~ N D I U M  LDISK LOADED 
BRAZED WITH JOINT WAVEWIDE 
FILLET 

Fig. 1. Diagram of the 19 Ce l l  Bi-periodic Acceler- 
ating Structure with RF Input System. 

l inac  sect ion.  An e lec t ron  beam was acce lera ted  
t o  an energy of 6 MeV. Taking account of phase 
s l i p  during the  capture process, an energy gradien t  
of about 1.8 Mev per foot  in the structure is i n -  
dicated. This gradient  i s  consis tent  i t h  the  ob- 

during operation a t  2'K. 
It i s  f e l t  t h a t  by fur ther  work a considerably 

higher Q and a higher energy gradient  w i l l  be ob- 
ta ined.  A more thorough theo re t i ca l  ana lys i s  of 
the  bi-per iodic  s t ruc tu re  i s  now being made, and 
fur ther  work i s  i n  progress t o  check the  e f f e c t  
on shunt impedance and f i e l d  p r o f i l e  of various 
parameters of the  s t ruc ture .  Low temperature 
t e s t s  t o  measure the  Q and e l e c t r i c  f i e l d  break 
down e f f ec t s  i n  su i tab le  s t ruc tures  w i l l  continue. 

served input power and a Q of about 10 8 measured 
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Fig. 3. Dispersion diagram for  the 19 C e l l  Structure 
at 300% and 4.2%. 
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Fig. 4. Axial Field Profiles for the 19 Cell Bi- 
periodic Structure. 
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Fig. 5. Axid Field Profiles for the 5 Cell Bi-periodic 
Structure. 

PAC 1967


