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Sumnary 

The object of t h i s  paper i s  t o  iden t i fy  the  
m n y  low temperature aspects of a cryogenic ackel- 
e r a to r  and t o  ind ica te  hau these  a re  re la ted  t o  
the  operating charac te r i s t ics  which might ult imately 
be achieved. 

I. Introduction 

a t  low temperature it i s  possible t o  construct an 
e lec t ron  l i nea r  accelerator (e lec t ron  l i nac )  with 
cha rac t e r i s t i c s  f a r  superior t o  those of present 
conventional l inacs .  The near-zero RF surface re- 
s i s tance  of superconductors and the  near-perfect 
heat transport  p roper t ies  of superfluid helium, i n  
combination, o f f e r  an elegant so lu t ion  t o  t he  
technica l  problems of cms t ruc t ing  a l inac  with 
near-ideal cha rac t e r i s t i c s .  The cryogenic l i nac  
would make important new areas of physics accessible 
t o  experimentation. 

A .  Conventional Linac Charac te r i s t ics  

The design of an e lec t ron  l i nac  i s  dominated 
by the  RF surface res i s tance  of t he  n e t a l  from 
which t h e  accelerator s t ruc ture  i s  fabricated.  
For a given energy gradient the  surface res i s tance  
determines the microwave power requirement. 
tu rn ,  t h i s  power requirement d i r e c t l y  a f f ec t s  the  
duty cycle and the  energy gradient 3f an electron 
l i nac  and ind i rec t ly  influences the  energy resolu- 
t i o n  and the  average cmren t .  

The power required 50 generate the  accelerat-  
ing f i e l d s  i n  the  RF s t ruc ture  i s  given by 

By exploit ing the  unique proper t ies  of matter 

Ir, 

P = o 2  
L r  

where V/L is the  energy per un i t  length gained 
by the  electrons and r i s  the  shunt impedance 
per un i t  length. 
length can be expressed a s  

The shunt impedance per un i t  

G r = -  
R 

where G i s  a geometrical fac tor  which increases 
l i n e a r l y  with frequency and R i s  t h e  surface 
res i s tance  of the  metal. For a copper s t ruc ture  
operating a t  room temperature and 1 GHz 
G = 2.25 X lo3 ohm2 cm-1 R = 7.5 x lo-' ohm and 
r = 0.3 x 106 ohn: cm-l.& An energy gradient of 

3 MeV per foot thus implies a power d iss ipa t ion  i n  
the  copper accelerator s t ruc ture  of 1.0 X 106 watts 
per foot .  

RF power of lo6 wat t s  per foot can be provided 
by high power klystrons,  but only f o r  short gulses 
a t  l o w  r epe t i t i on  r a t e s .  The f r ac t ion  of the  t o t a i  
time t h a t  t he  RF power i s  ava i lab le  and therefore 
t h a t  electrons can be accelerated i s  typ ica l ly  

This time fac tor  i s  called the duty cycle 
of t he  acce lera tor .  

Tne very la rge  amount of RF power required t o  
generate the  acce lera t ing  f i e l d s  ir, a conventional 
e lec t ron  l i nac  a l so  l i m i t s  the energy gradients 
which a r e  obtained. Typically, e lec t ron  l inacs  
a re  designed f o r  maximum energy gradients of 2-L 
MeV per foot .  Although it w m l d  be possible t o  
achieve s ign i f i can t ly  higher gradients,  these a re  
not p r a c t i c a l  since the  RF power requirement in- 
creases a s  the square of t he  energy gradient.  

The pulsed operation of conventional electron- 
l inacs  l i m i t s  the energy reso lu t ion  of the emerging 
electron beam. Typically, the e lec t ron  beam pulse 
i s  one o r  a t  most a few microseconds i n  duration. 
A s  a r e su l t ,  t r ans i en t s  a r e  bnportant and are,  i n  
f ac t ,  t he  pr inc ip le  l imi t a t ion  on energy resolution. 

Finally,  the low duty cycle operation (a 
implies t h a t  very la rge  peak currents must be 
accelerated i f  subs t an t i a l  average currents a re  t o  
be obtained. Ultimately, the  peak current i s  
l h i t e d  by beam-break-up or by the peak microwave 
power requirements. * 
B. Cryogenic Linac Charac te r i s t ics  

A s  described i n  the preceding paragraphs, the  
magnitude of t he  surface res i s tance  exer t s  a major 
influence on the  design and operating charac te r i s t ic  
of an e lec t ron  l i nac .  Uxfortunately, apart  from 
d ras t i c  revisions such a s  those contemplated i n  the 
cryogenic accelerator,  l i t t l e  can be done t o  hi- 
prove the  surface res i s tance .  It i s  impossible t o  
decrease subs tan t ia l ly  the  surface res i s tance  of 
normal metals because of the anomalous skin e f f ec t .  
Even i f  t he  dc conductivity of copper were t o  
approach i n f i n i t y ,  a s  it should a s  the  temperature 
approaches zero, the surface res i s tance  a t  1 GHz 
would only decrease by a f ac to r  of 6.7 below i t s  
observed value a t  room temperature. 
l i m i t a t i m  applies t o  a l l  normalmetals, it does 
not apply t o  superconductors. The RF surface re- 
sistance of a superconductor decreases rapidly a s  

Although t h i s  

~ 
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***This value of t he  shunt impedance is  aopropriate 
t o  the  standing wave bi-periodic n/2-mode s t ruc ture .  

t 
Usually the  energy gradient is  given primary 

consideration i n  the  design of electron l inacs .  
A t  present time, however, MIT i s  constructing an 
electron l i nac  i n  which the duty cycle, the  energy 
resolution, anä the  average current a re  improved 
a t  the expense of the energy gradient.  
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t t e  temperature i s  reduced below tne t r a n s i t i o n  
temperature and, ir. principle,  it vanishes expon- 
en t i a l ly  i n  the  l imi t  T + 0. 

The po tec t i a l  gains t o  be achieved i n  2 

cryogenic acce lera tor  a re  enormous. F i r s t ,  the 
near-zero surface res i s tacce  of superconductors 
makes it possible t o  generate the desired acclera- 
t i n g  f i e l d s  a t  RF power l eve l s  3n the  order of 
watts per foot .  
i n  fac t ,  s e t  by the beam power desired, since the 
power d iss ipa t ion  i n  the  s t ruc ture  walls i s  small 
by canparisor,. Thus the  IIF payer can be provided 
by a low power continuous wave (CW) klystron and 
the  cryogenic accelerator can be operated a t  un i ty  
duty cycle. Second, i n  pr inc ip le ,  t he  energy 
gradient can be increased appreciably. Due t o  the  
near-zero surface resistance of superconductors 
the  energy gradient i s  no longer l imited by power 
requiremerits, but only by magnetic or e l e c t r i c  
breakdown. 
might allow energy gradients a s  'nigh as  1 6  MeV per 
f o o t  i n  a standing wave s t ruc ture .  Third,  it 
should be possible t o  improve the energy reso lu t ion  
subs tan t ia l ly ,  perhaps t o  one par t  i n  lo4. 
l inac  which operates continuously t r ans i en t s  w i l l  
no longer determine the  energy resolution. 
with CW operation, it i s  r e l a t ive ly  easy t o  use 
feedback t o  regulate the  energy. 
cryoger.ic accelerator could be an a t t r a c t i v e  way 
t o  achieve high average beam current. Most of the  
RF power i s  converted t o  beam power and even f o r  
average czrrer-ts of many n5lliamps the  power could 
be provided by CW klystrons with no modulators. 
Thus the RF parer i s  r e l a t ive ly  inexpensive. 

The operating charac te r i s t ics  of a cryogenic 
accelerator mentioned above are,  of course, opti-  
mistic.  Achieving the  ult imate i n  any one of these 
operating Characterist ics involves a number of pro- 
blems of s ign i f icant  proportions. 
are considered i n  the  l a t e r  sections of t h i s  paper 
from the  point of view of low temperatures. 
tunately,  t he  properties of matter a t  low tempera- 
t u re  conspire la rge ly  i n  our favor. 

The RF parer requirements a re ,  

I n  p r inc ip le  the breakdown phenomena 

I n  a 

Further, 

Fourth, the  

These problems 

For- 

C. Low Temperature Aspects 

I n  addition, one must provide the RF power t h a t  i s  
absorbed by the  beam, but since t h i s  i s  c m o n  t o  
both the  conventional l inac  and the cryogenic l i nac ,  
it w i l l  be neglected.* I f  the  cryogenic l inac  i s  
t o  operate with the same t o t a l  power consumption, 
t he  RF power dissipated a t  helium temperature must 
not exceed a few watts per foot .  Accordicg t o  the  
second law of thermodynamics, one watt of power 
removed a t  the temperature T requires a pDwer in- 
put of approximately 300/T watts a t  rocm teffiperature. 
Fresent r e f r ige ra to r s  operate a t  roughly lO$ of t h i s  
Carnot efficiency and therefore = 1.5  kilowatts i s  
required t o  remove one watt a t  the expected operat- 
ing temperature. A power d iss ipa t ion  of a few watts 
per foot requires a surface resistance of = 2 x 10-8 
ohms. It is  shown i n  Sectior. I1 t h a t  t h i s  value of 
the surface resistance can, i n  pr inc ip le ,  be achieved 
i n  superconducting lead o r  niobium a t  temperatures 
j u s t  below 2OK. 
res i s tance  i s  50 t o  100 times la rger .  

Power d iss ipa t ion  a t  helium temperature of 2 
few w a t t s  per foot is also consistent w i t h  t h e  ob- 
jec t ive  of maintaining the  i n i t i a l  cost of a cryo- 
genic l inac  a t  l eve ls  comparable t o  the  conventional 
l inac .  The i n i t i a l  cost  of a r e f r ige ra to r  t ha t  w i l l  
remove 100-1000 watts a t  a temperature ju s t  below 
2OK i s  $1000-$1500 per wat t .  This i s  a subs tan t ia l ,  
but a l so  a reasonable contribution t o  the  t o t a l  cost  
of the  cryogenic accelerator.  

t o r  it i s  e s sen t i a l  t h a t  the  temperature be l e s s  than 
2%. Xe have already noted the  "economics" involved 
i n  the choice of an operating temperature. 
temperature i s  equally important ir. achieving thermal 
and mechanical s t a b i l i t y .  As discussed i n  Sectioc 
111, t h i s  s t a b i l i t y  i s  extremely imp0 t a n t  i n  achiev- 

importance here i s  the f ac t  t h a t  below 2% l iqu id  
helium i s  a superfluid.  The accelerator s t ruc ture  
can be t o t a l l y  immersed i n  a thermal reservoi r  t h a t  
i s  near idea l .  The spec i f ic  heat per gram of super- 
f l u i d  h e l i m  near 2'K i s  the  same a s  t h a t  of water 
a t  room temperature. The la rge  spec i f ic  heat coupled 
with the  near-perfect heet t ranspor t  p roper t ies  of 
the  superfluid makes it nossible t o  d i s t r ibu te  the  

A t  4.2OK by comparison the  surface 

For successful operation of a cryogenic accelera- 

Tie low 

ing energy resolution approaching 10- E . Of grea tes t  

The implications of operating an accelerator power d iss ipa ted  i n  the acce lera tor  rapidly through- 
i n  a cryogenic environment must be considered from aut a la rge  thermal reservoi r .  Further, t he  thermal 
macy points of view. Of primary importance, how- conductivity of commercially available metals i s  as  
ever, i s  the quantity of RF power t h a t  i s  dissipated great a t  helium temperature a s  a t  room temperature. 
a t  h e l i m  temperature since the la rges t  contribu- Thus one can produce an environment a t  helium tem- 
t o r  t o  the i n i t i a l  cos t  and the  operating expense perature t h a t  is  f a r  more s tab le  than possible a t  
of a cryogenic accelerator i s  the helium temperature room temperature. 
r e f r ige ra to r .  
t ron  l i nac  should be constructed and operated a t  
costs comparable t o  a conventi6nal l i nac .  Since helium reservoi r .  I f  a cryogenic accelerator i s  
the  operating cha rac t e r i s t i c s  af a cryogenic 
accelerator can be d i s t i n c t l y  superior t o  those 
of a conventional l i nac ,  t h i s  c r i t e r i o n  i s  r a the r  
s t r i c t .  However, achieving t h i s  objective i s  
c l ea r ly  des i rab le  and i s  , i n  pr inc ip le  , possible.  

linear accelerator. noted the  peak replacement cos ts  of klystrons which is  important. 
power d iss ipa t ion  i n  a conventional l i nac  i s  
approximately LO6 watts per foot .  
power dissipated at a duty cycle of 10-3 is then 
lo3 watts per foo t .  
stron and the  associated modulators might increase 
the  power consumption t o  4 X LO3 watts per foot .  

Let us assume t h a t  a cryogenic elec- There i s  another advantage t h a t  follows simply 
from the  la rge  thermal capacity of t he  superfluid 

designed t o  operate with uni t  duty cycle a t  an en- 
ergy gradient of 3 MeV per foot ,  it would be possible 
t o  increase the  gradier.t i f  t he  duty cycle i s  de- 
creased? The condition t o  be s a t i s f i e d  i s  t h a t  the  
* 

We assume t h a t  t h i s  cost  i s  also common t o  both l i n -  
acs although the  low power CW klystrons used in  the  
cryogenic l i nac  a re  l e s s  expensive and might reason- 
ably have longer operating l i v e s  than high-power 

Consider f i r s t  t he  operating expense of a I n  estimating operating cos ts  we have a l s o  neglected 

The average 

The ef f ic iency  3f the  kly- 
klystrons* 

Al te rna t ive ly ,  i f  the surface res i s tance  i s ,  say, 
an order of magnitude grea te r  than calculated,  one 
could compensate by reducing the  duty cycle.  
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average power d iss ipa t ion  must not exceed the  power 
t h a t  can be removed by the  r e f r ige ra to r .  The su- 
pe r f lu id  reservoi r  a c t s  as  a buf fer  between the  
power d iss ipa ted  i n  the  acce lera tor  and the  r e f r i -  
gera tor ,  matching the  fractLona1 duty cycle of t he  
former t o  t he  unity duty cycle of t he  l a t t e r .  The 
thermal capacity of the superfluid reservoi r  i s  
s u f f i c i e n t l y  la rge  tha t  fo r ,  say, a 10% duty cycle, 
t he  beam pulse could be many seconds i n  duration. 
Thus the  bas ic  operation of the  cryogenic accelera- 
t o r  would cot change markedly f o r  such pulse6 
operat ion. 

i n s t ruc t ive  t o  consider the  ro le  of the  superfluid 
a s  t h a t  of providing a reservoir fo r  thermal energy. 
A t  the same time, one can look a t  the  ro le  of 
superconductivity as  t h a t  of providing a reservoi r  
f o r  RF energy. 
i s  stored i n  an accelerator s t ruc ture  a t  1 GHz and 
3 MeV per foot .  
a t e  a t  unity duty cycle,large peak currents are not 
r e w i r e d  and thus energy i s  extracted from the  

I n  discussing thermal s t a b i l i t y  above it was 

A very sizeable amount of RF energy 

Since the  cryogenic l inac  can aper- 
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(3 1 -- 
s t ruc tu re  s u i t e  slowly. As described i n  Section 111, 
the  accelerating f i e l d s  cannot change appreciably 
i n  times much l e s s  than milliseconds. T h i s  long 
time s impl i f ies  considerably the  requirements on 
the  RF system. 

mentioned above, i s  required i n  physics experiments 
employing time of f l i g h t  techniques. For time cf 
f l i g h t  experiments a subnanosecond b u r s t  of elec- 
t rons  followed by a dead time of perhaps 10-103 
nanoseconds i s  required. This mode of operatisn 
would require a spec ia l  i n j ec to r ,  but could be 
accomodated i n  a cryogecic accelerator with no 
fur ther  modifications. The current from the  in- 
j e s t o r  could e a s i l y  be increased by a fac tor  of 
10 
r-anosecond dead time the  average current could 
remain unchanged a t  a few hundred nicroamps. 
the  superconducting s t ruc ture  provides a reservoi r  
fo r  RF energy. 
between the  pulsed beam and the  CW klystron, match- 
ing the  f r ec t iona l  duty cycle of the  former t o  the  
u n i t  duty cycle of t he  l a t t e r .  In  f a c t ,  fo r  t he  
s o r t  of pulsed operation required i n  time of f l i g h t  
experiments, the  cryogenic accelerator i s  an idea l  
pulsed machine. 

We have attempted i n  t h i s  introduction t o  in- 
d ica te  how the  various properties of matter a t  low 
temperature can be u t i l i z e d  in  c a b i n a t i o n  t o  
achieve s igni f icant  improvement i n  the operating 
cha rac t e r i s t i c s  of an electron l inac .  By designing 
the  f i r s t  cryogenic accelerator with the  ult imate 
objectives i n  mind, one reaps a two-fold bene f i t .  
F i r s t ,  t h i s  approach provides a subs tan t ia l  margin 
of sa fe ty  i f  i n  the ea r ly  development one m c s t  
s e t t l e  f o r  l e s s  dramatic improvements. 
one has prepared the way t o  u t i l i z e  improved tech- 
niques a s  they develop. 

Pulsed operation, of a d i f f e ren t  so r t  than 

during the  beam pulse and thus even f o r  a lo3 

Again, 

This reservoir ac t s  a s  a buffer 

Second, 

11. W Power Dissipation 

The RF power d iss ipa t ion ,  a s  indicated i n  the  
Introduction, a f f ec t s  a l l  of the  important opera- 
t i n g  charac te rs t ics  of an electron l inac .  
these charac te r i s t ics  t he  RF d i ss ipa t ion  influences 
the duty cycle most d i rec t ly .  The RF surface re- 
s i s tance  i s  the  primary fac tor  i n  determining the  
power d iss ipa t ion .  

Anong 

In t h i s  section the  surface 

res i s tance  of superconductors and the  influence of 
t h i s  res i s tance  on the choice of the  operating 
temperature and on the duty cycle a re  discussed. 

A .  Theoretical  Surface Resistame of Superconductors 

According t o  the  theory of Mattis and Bardeenl 
t he  properties of the  superconductor t h a t  determine 
i t s  surface res i s tance  a re  the energy gap, E, the  
London penetration depth, h ~ ,  the  Femi  velocity,  
vF, t he  coherence length, 5 ,  and the  electron mean 
f r e e  path, &. I n  the  l imi t  t ha t  4,s >> XL t he  
surface r e s i  tance can be expressed i n  a r e l a t i v e l y  
simple form: 5 

R, 
anomalous l imi t  and i s  given by3 

i s  the normal s t a t e  surface res i s tance  i n  the  

The dc conductivity u i s  proportional t o  the  elec- 
t ron  mean f r ee  path; therefore the  normal s t a t e  
surface res i s tance  i s  independent of temperature ir. 
t he  anmalous l i m i t .  
the  reduced surface resistance of a superconductor, 
Rs/F& i s  a universal  function of a reduced tempera- 
t u re ,  kT/e, and a reduced frequer-cy, IkL/c. Further, 
t he  tempera2u-e dependence and the  frequency depen- 
dence a re  nearly separable. 

i s  qu i te  ins t ruc t ive .  From Eq. (1) it can be seen 
t h a t  f o r  B given energy gradient t h e  RP power dis- 
sipated per un i t  length i n  a cryogenic accelerator 
i s  proportional to R,/m. Using Eqs. (1) and ( 2 )  
above we have approximately 

Equation (2)  indicates t h a t  

The simple expression for  t he  surface res i s tance  

2 '0 exp(-E) . L T 2kT 

It i s  c lear ly  desirable t o  choose a su2erconductor 
with a la rge  energy gap and t o  operate a t  low f r e -  
quency and low temperature. Note t h a t  f o r  a normal 
metal a t  roon temp ra ture  the  power dissipated i s  
propopional  t o  a) z ( R  
t o  
In  contrast ,  f o r  a superconductor the power dissipated 
i s  proportianal toinand thus lower frequencies are 
favored. 

Among pure metals t he  superconductors with the  
l a rges t  energy gaps are lead and niobium. 
unity duty cycle operation i n  a cryogenic accelera- 
t o r  even for  these superconductors, it i s  desirable 
t o  operate a t  temperatures below 2OK. Calculated 
values of the surface res i s tance  a t  1 GHz fo r  copper, 
lead and ciobium are  given i n  Table I f o r  several  
temperatures. A s  indicated i n  the  tab le ,  the sur- 
face res i s tance  of lezd and niobium i s  50 t o  100 
times la rger  a t  4 . P 3 ~  than a t  1.85OK. 
noted tha t  the values of 
were cot calculated frcrm Eq. (2 ) ,  but r a the r  were 
numerically calculated4 from the  theory of Mattis 
and Eardeen including the  e f f ec t s  of a f i n i t e  co- 
herence length. 
the  temperature and frequency dependence r e l a t ive ly  

-f i n  t h i s  case i s  proportional 
G) and thus higher frequencies a re  favored. 

To achieve 

It should be 
3, given i n  the  t ab le  

The f i n i t e  coherence length changes 

PAC 1967



SCHWETTMAN ET AL: LOW TEMPERATURE ASPECTS OF A CRYOGENIC ACCELERATOR 339 

TABIE I 

Theoretical  Surface Resistance a t  1 G:-Iz 

Material Temperature S ta t e  R 
(OK)  (ohms ) 

Ccpper 300 w 7.5 x 

Lead 4.2 sc 6.3 x 10-7 
1.85 sc 9.8 x 10-9 

Nio-bium 4.2 SC: 7.7 x 10-7 
1.85 sc 5.0 x 10-9 

0 N 1.35 x 

0 N 6.2 X 

l i t t l e ;  i t s  e f f ec t  i s  l a rge ly  t o  increase the  sur- 
face  res i s tance  by a mul t ip l ica t ive  fac tor .  Values 
of the parameters used i n  the  calculations f o r  lead 
and niobium are  given i n  Table I1 together with 
pa rme te r s  appropriate t o  aluminum and t i n .  The 
r a t i o s  s / X L  and Rs/Rs ( 6  = m )  a r e  a l so  given i n  
Table 11. Tke f i n i t e  coherence length increases 
X s  subs tan t ia l ly  when 5 becomes of order XL. 

however, we have c0nsisteEtJ-y produced moll mode 
cav i t i e s  elecfrcplated with lead for  which Q's of 
a few times 109 a re  observed.6 This i s  an impro- 
vePent of a fac tor  of =: 105 compared t o  roam ten- 
perature copper cav i t i e s  and an kprovement of 
= 100 compared t o  previous work. Recently Q's a s  
high a s  6 X io8 have been measured i n  niobium 
c a ~ i t i e s . ~  Although n iob im is not ye t  competitive 
with lead, t h i s  i s  B subs tan t ia l  improvment over 
our e a r l i e r  experience and i s  promising f o r  the  
fu ture .  

To achieve the extrenely low losses  e s sen t i a l  
t o  the  cryogenic acce lera tor  requires very careful 
consideration of excerimental teck?ique. 
many extraneous sources of l o s s  which can occur. 
Some of t he  losses observed i n  pa r t i cu la r  experi- 
ments a re  not r e l a t ed  t o  the superconducting 
surface. For example one car. have losses  ir. the  
coupling netwcrk or i n  j o i n t  where the  cavity i s  
assembled. O u r  i n t e r e s t  here i s  i n  losses  associa- 
ted  with the  superconducting surface i t s e l f .  We 
w i l l  be content t o  iden t i fy  and t o  comment b r i e f l y  
on the  sources of res idua l  l o s s  t h a t  we have c lear ly  
sbserved or t ha t  we suspect. 

There a re  

It i s  important t o  

TABLE II 
Physical Parameters f o r  Several Superconductors 

Tin 3.73 3.5 0.65 3.55 0.23 6.5 3.2 

Lead 7-19 1.1 0.60 3.1 0.092 3.0 4.9 

Niobium 5-25  3.7 0.29 3.5 0.039 1.1 1 2  

One car- a l so  ca icu la te  the  e f f ec t  of a f i n i t e  
e lec t ron  mean f r e e  path on the  surface res i s tance  
of a supercondnctor. The mean f r e e  path produces 
an appreciable change Ir. Rs when the  magnitude of 

becomes comparable t o  5 .  In te res t ing ly  enough, 
a s  the  mean f r ee  path decreases, t he  surface re -  
sistance i n i t i a l l y  decreases. For lead a t  4.2OK 
it would appear t h a t  the surface res i s tance  could 
be inpoved  by a f ac to r  of two i n  t h i s  way. This 
i s  probably nct t he  way t c  improve operation of a 
cryogenic accelerator,  put it does ind ica te  a 
tolerance f o r  t h i s  form of degradation. 

Using Eq. (1) and Table I we can ca lcu la te  the  
theo re t i ca l  power dissipatior,  fo r  a cryogenic l i nac  
operating a t  r .85O~.  
i s  plated with lead, the  power d iss ipa t ion  is  1.3 
watts per foo t .  This is  e n t i r e l y  consistent with 
the  objectives outlined i n  the Introduction. 

8.  Residual Losses 

pleasant f a c t  t h a t  i n  prac5ice one always observes 
res idua l  losses. The res idua l  l o s ses  observed i n  
previous work5 have been many times, even 100 times, 
the values reqcired f o r  successful operation of a 
cryogenic acce lera tor .  

If the acce lera tor  s t ruc ture  

T'e preceding discussion neglected the  un- 

During the  past few years, 

note t h a t  t he  very high Q's reported f o r  supercon- 
ducting lead cav i t i e s  have been obtained with only 
modest precautions. More de ta i led  icves t iga t ion  
i n t o  the  sources of r e s idua l  losses  i s  proceeding 
along the  l i n e s  discussed below and should r e su l t  
i n  s t i l l  b e t t e r  r e s u l t s .  

The source of r e s idua l  l o s s  t h a t  can be xos t  
c lea r ly  iden t i f i ed  i s  trapged magnetic flux. Mag- 
n e t i c  flux trapped i n  the  superconducting surface 
can a r i s e  from the  ambient f i e l a  present when the  
cavi ty  i s  cooied below the  t r ans i t i on  texperature, 
frcm ferromagnetic impurit ies ir. t he  surface (there 
a re  a l a rge  number of po ten t i a l  candidates, since 
we only require t h a t  t h e  impurity have a C u r i e  
temperature grea te r  than 2'K), or  from thermoelectric 
currents present when the  cavi ty  goes superconduct- 
ing. Experiments have been performed8 i n  which the 
ambient f i e i d  during cool down was varied from lo-& 
gauss t o  10 gauss. 
f l u x  a re  co t  ye t  understood i n  d e t a i l  but i n  any 
case it wculd appear t h a t  ambient f i e l d s  of a few 
mill igauss a re  to l e rab le  i n  a cryogenic accelerator,  
whereas t h e  e a r t h ' s  magnetic f i e l d  contributes a 
s ign l f i can t  l o s s .  Experiments a re  i n  progress t o  
improve our understanding of the  mechanism for  
losses  associated with trapped f l a x  and t o  determine 

The enhacced losses  frgn ;rapped 
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i f  magnetic impurit ies or thermoelectric currents 
lead t o  f l u x  trapping i n  our cav i t i e s .  

be degraded i f  the  superconducting l aye r  i s  t oo  
th in .  In  the  proximity of t he  normal metal  sub- 
s t r a t e  the  superconducting state i s  a l t e r ed  
appreciably. Providing the  superconducting layer  
i s  much th icker  than the coherence length  and the  
penetration depth t h i s  does not a f f ec t  t h e  i n t e r i o r  
superconducting surface of the  cavity.  

Surface roughness o r  surface contamination 
could a l so  be important f ac to r s .  The negative 
e f f e c t s  of surface roughness a re  pa r t i cu la r ly  
noticeable i n  t i n .  For e lec t ropla ted  surfaces 
roughness i s  minimized i f  the  p la ted  layer  i s  t h i n .  
Roughness can be reduced fu r the r  by severa l  methods 
and these a re  being studied. In  addition, surface 
contamination can lead t o  e i t h e r  r e s i s t i v e  o r  die- 
l e c t r i c  losses.  The lead surfaces present ly  used 
a re  dried with e thy l  a l cho l  immediately a f t e r  
e lec t ropla t ing  t o  minimize oxidation; no high 
vacuum outgassing has so f a r  been attempted. 

Crystal l a t t i c e  defec ts  might a l s o  contribute 
t o  losses.  A s  noted previously, a simple reduction 
i n  the  e lec t ron  mean f r e e  path leads t o  reduced 
losses .  It i s  possible, however, t h a t  major d i s -  
turbances i n  the  l a t t i c e  could r e s u l t  i n  a l o c a l  
var ia t ion  i n  the  superconducting s t a t e .  In  our 
present experiments lead i s  e lec t ropla ted  on a 
copper substrate.  There i s  some evidence that the 
d i f f e r e n t i a l  thermal contraction tha t  occurs during 
cool down generates defec ts  and thereby ehhances 
the  losses .  

As a diagcostic t o o l  i n  the inves t iga t ion  of 
res idua l  losses  it would be usefu l  t o  measure the  
frequency dependence of t he  res idua l  losses .  
eliminate anbiguity it i s  desirable t o  make a l l  
measurements on the same sample and wi th  the  same 
current d i s t r ibu t ion  over the sample's surface. 
A t  present we are  preparing an experimental system 
which approximates t h i s  s i tua t ion .  

111. Cryogenic S t a b i l i t y  

10-4 i n  a cryogenic accelerator places s t r i c t  re- 
quirements on the  frequency and amplitude s t a b i l i t y  
of the  RF source and on the thermal and mechanical 
s t a b i l i t y  of the accelerator s t ruc ture .  

Although the primary concern of t h i s  section 
is  the  s t a b i l i t y  of the  cryogenic system it i s  of 
value t o  comment b r i e f l y  on the  s t a b i l i t y  required 
of the  RF source. Tne f i e l d s  i n  a microwave reson- 
ant s t ruc ture  depend on frequency a s  

The proper t ies  of a superconducting cavi ty  can 

To 

Achieving an energy reso lu t ion  approaching 

where (LI i s  the resonant frequency and QL i s  
the  loadgd Q. The bandwidth i s  %/QL and thus  
the  higher QL t he  more s t r i c t  t he  demands on 
frequeccy s t a b i l i t y .  But the decay time f o r  the  
f i e l d s  i s  T = &duo and thus amplitude s t a b i l i t y  
i s  nore e a s i l y  achieved f o r  la rge  QL. The b e m  
loaded Q i n  a cryogenic accelerator f o r  an energy 
gradier t  of a few MeV per foot and an average 
current of a few hundred microamps i s  roughly 107. 
Fortunately, t h i s  i s  a reasonable compromise be- 
tween the  ccsnpeting f ac to r s  noted above. 

Let us inquire then what frequency and ampli- 
tude s t a b i l i t y  i s  required of the  RF so'nce i f  t e 

In prac t ice  it i s  reasonable t o  tune the  source 
frequency t o  within l$ of t h e  bandwidth. I f  we 
evaluate the  der iva t ive  dE(u)/du, a t  a distance 
from resonance t h a t  i s  1% of the  bandwidth, it 
follows t h a t  t he  frequency must be held constant 
t o  1/4$ of t he  bandwidth. For QL lo7 t he  frac- 
t i o n a l  frequency s t a b i l i t y  i s  2.5 X 
same QL t he  amplitude must be s t ab le  t o  one par t  
i n  LO4 averaged over a time 
seconds. These s t a b i l i t y  requirements on the  RF 
source a re  s t r i c t  but not unreasonable. 

a l s o  applies t o  the  resonant frequency of the accel- 
e r a to r  s t ruc tu re .  
the  thermal and mechanical s t a b i l i t y  of t he  s t ruc ture  

A .  Thermal and Mechanical S t a b i i i t y  Requirement 

t o  guarantee t h a t  t he  resonant frequency of the 
s t ruc ture  w i l l  remain constant. This sec t ion  of 
the paper defines the  extent of the  thermal and 
mechanical s t a b i l i t y  required while the  following 
section demonstrates the p r a c t i c a b i l i t y  of achiev- 
ing t h a t  s t a b i l i t y .  

Before t r e a t i n g  the superconducting case, i e t  
us consider a copper s t ruc tu re  operating a t  room 
temperature. For the  copper s t ruc ture  QL = 2 X 10' 
and, i f  the f i e l d s  a re  t o  be held constant t o  one 
pa r t  i n  lo4, the  f r ac t iona l  frequency s t a b i l i t y  i s  
1.2 X 10-7. The resonant frequency of the  struc- 
t u r e  can change with temperature due t o  thermal 
expansion. For copper a t  room temperature the  
thermal expansion coef f ic ien t  a = 1.7 X 1 0 - 5 0 1 ~ ~ ~  
and thus the  temperature must be held constant t o  
0.007°K. 
l o 6  watts per foot,  $his i s  nont r iv ia l .  

i s  l e s s  d i f f i c u l t  a t  l . 8 5 O K .  The expansion coef- 
f i e i e n t ,  according t o  the  Grueneisen r e l a t ion ,  i s  
proportional t o  the  spec i f ic  heat of the metal and. 
therefore i s  extremely s m a l l  a t  l o w  temperatures. 
For copper a t  the  operating temperature a J 6 X  lO-'Oc 
Ever. though the frequency s h i f t  allowed i s  500 t h e s  
smaller for  a cryogenic accelerator the  temperature 
must only be held constant t o  0.4%. i n  a cryogenic 
accelerator we must a l s o  consider the  temperature 
dependence of the  surface reactance. The surface 
reactance, X, can be expressed 6s a skin depth, 5, 
using the  expression 6 = X/p& (mks). The quantity 
of i n t e re s t  i s  d6/dT whict vanishes exponentially 
with temperature. 
t he  theory of Mattis and Bardeen gives 
4 x 10-9 cm/OK. When consideration i s  given t o  the 
exponential temperature va r i a t ion  of dG/dT 
perature difference implied i s  AT = 0.3OK. It i s  
worth noting t h a t  
and thus the  temperature would have t o  be held con- 
s tan t  t o  O.Ol°K. 
d i ss ipa t ion  a t  4.2'K, t h i s  requirement on temperaturc 
s t a b i l i t y  provides an addi t iona l  reason for operatin{ 
a cryogenic accelerator below 2'K. 

Another po ten t i a l  source of frequency s h i f t  i n  
a cavity s t ruc ture  i s  mechanical deformations caused 
by changing pressure. The s t ruc ture  i s  immersed i n  
l i qu id  helium and even modest pressure changes re- 
sult i n  s ign i f icant  frequency changes. A frequency 

f i e l d s  a re  t o  be held constant t o  one part i n  10 t . 

For the  

'I = QJuo 2 i. 5 X 10-3 

The f r a c t i o n a l  frequenay s t a b i l i t y  of 2.5 x 10-1 

In  tu rn  t h i s  implies denxmds on 

Thermal and mechanical s t a b i l i t y  a re  necessary 

I n  the presence of peak RF diss ipa t ion  of 

Forfunately , the  problem of thermal s t a b i l i t y  

For superconducting lead a t  1.89~ 
d6/dT = 

t he  tem- 

dG/dT = 4 X 10-7 cm/OK a t  4.2'K 

Coupled wi th  the  much la rger  power 
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change of 2.5 X lO-lou0 implies t h a t  the maximum 
change i n  diameter t h a t  can be permitted i s  approxi- 
mately one angstrom unit. It i s  reasonable t o  con- 
s t r u c t  an acce lera tor  s t ruc ture  of suf f ic ien t  
strength t o  t o l e r a t e  pressure changes of 1-m Hg. 
However, t o  proceed along t h i s  l i n e  muck fur ther  
i s  d i f f i c u l t ;  t he  f i r s t  s t r u c t  
sh i f ted  ir. frequency 0.8 X 10'ltruo with a 1 mm Hg 
pressure change. 
s t ruc ture  i s  the vapor pressure of the  superfluid 
hellum, t o  maintain constant pressure implies re- 
s t r i c t i o n s  on the  temperature s t a b i l i t y  of the  
reservoi r .  The vapor pressure of helium can very 
crudely be represented by t h e  expression 

e we fabricated 

Since the  pressure acting on the  

(5) A 
T P = P exp ( -  -) . 

The pressure and thus the  derivative 
exponentially with temperature. 
mm Hg and a 1 mm Hg pressure change implies a 0.020°K 
temperature change. 
se rvoi r  t h i s  s t a b i i i t y  i s  within reason. 

Together the  e f f ec t s  of thermal expansion and 
changing sk in  depth r e s t r i c t  t he  temperature grad- 
i en t s  t h a t  can be to l e ra t ed  i n  a cryogenic accelera- 
t o r  t o  0.15-0.20~~. 12 addition, t o  prevent m a &  
deformations of the  s t ruc ture ,  pressure and tempera- 
t u re  changes ir, the  superfluid reservoi r  of l e s s  than 
1 mm xg and 0.02'~ respectively a re  required. 
the following section it i s  shown t h a t  these demands 
can be sa t i s f i ed .  

dP/dT vanis'n 
AS 1 . 8 p K ,  P = l 5  

With a superfluid helium re- 

~n 

B. The Superfluid Reservoir and Conduction t o  the  
Reservoir 

To achieve the  desired frequency s t a b i l i t y  the  
microwave power dissipated a t  the  i n t e r i o r  surface 
3f the  accelerator s t ruc ture  must be conducted t o  
the  superfluid reservoi r  with a temperature d i f f e r -  
ence AT = 0.15-0.20°K. Since the  surface res i s tance  
var ies  exponentially with temperature s t i l l  smaller 
temperature differences a re  desirable;  l a rge  d i f f e r -  
ences r e s u l t  i n  a s ign i f icant  irxrease i n  the  power 
d iss ipa t ion  and thus i n  reduced efficiency. 
calculations below assuue the theo re t i ca l  power d is -  
s ipa t ion  f o r  an energy gradient of 3 MeV per foot  
(1.3 watts per foo t ) .  
foot o r  i n  t he  event that the losses  i n  prac t ice  
exceed the  theo re t i ca l  losses by an order of  magni- 
tude, the  thermai differences given below must be 
increased by a f ac to r  of ten .  Even fo r  these con- 
d i t i ons  the  cryogenic s t a b i l i t y  requirements can be 
s a t i s f i e a .  

There a r e  th ree  major contributions t o  the  
thermal resistance which must be considered i n  con- 
ducting heat t o  the  superfluid reservoi r .  
there  i s  the  boundary res i s tance  between the  super- 
conducting surface and the  normal metal from which 
the acce lera tor  s t ruc ture  i s  fabricated.  Second, 
there  i s  conduction through the  walls of t he  struc- 
t u r e .  And, f ina l ly ,  t he re  is  the boundary res i s tance  
between the  acce lera tor  s t ruc ture  and the  superfluid 
reseryoi r .  The ca lcu la t ions  which follow assume 
t h a t  the  acce lera tor  s t ruc ture  i s  fabr ica ted  from 
o .F.H. L'. copper .* 
%We a re  a l so  considering the  use of ccamnercially 
ava i lab le  high p u r i t y  aluminum i n  the  acce lera tor  
s t ruc ture .  An aluminum s t ruc ture  i s  l i gh te r ,  i s  
l e s s  expensive, has a l a rge r  thermal conductivity, 
but i s  more d i f f i c u l t  t o  e lec t ropla te  than O.F.H.C. 
copper . 

The 

For operation a t  10 MeV per 

F i r s t ,  

The temperature difference associated w i t h  
heat conduction through the s t r u c t u r e  walls can be 
estimated from the expression 

where P/L i s  the power dissipated per unit length 
(watts/", 2 is  the  h i e r  and ro the outer 
radius,  and k i s  the  average thermal conductivity. 
The theo re t i ca l ly  calculated power d iss ipa t ion  i s  
i.3 watts per foot.  
O.F.H.C. copperlo a t  1 .85 '~  i s  1 watt/cm°K, nearly 
as  grea t  a s  the  conductivity ;f copper a t  room tem- 
perature, and thus  AT < .001 K. Heat conduction 
out through the  acce lera t ing  s t ruc ture  disks, how- 
ever, i s  l e s s  favorable. Rough estimates suggest 
the temperature difference might be .OIO°K i n  the 
disks. 

The boundary res i s tance  which occurs both a t  
the  lead-copper in t e r f ace  and the  copper-helium 
in te r face  also contributes a temperature difference.  
I n  a normal metal t he  heat current i s  carried by 
the  conduction e lec t rons  while In a superconductor 
( a t  temperatures we l l  below T,) o r  i n  the superfluia 
the  heat current i s  carried by t h e  phonons. The 
heat conduction across the  boundary then i s  deter- 
mined by the  coupling between the  electron thermai 
current i n  the normal metal and the  phonon current 
i n  the  superconductoflor the  superfluid.  For the  
lead-copper boundary the  temperature difference 
i s  

The thermal conductivity of 

( I )  11 Q 

The calculated maximurn power t h a t  must be trans- 
ported across u n i t  area of the  in te r face  i s  < 
watts per an2. A t  1 . 8 5 O K  t h i s  implies aT < 10-30K. 
For t he  copper-superfluid boundary12 

and again the  temperature difference i s  < 10-30K. 
I n  t r ans fe r r ing  heat across the  copper-super- 

f l u i d  boundary it i s  possible t o  i n i t i a t e  fi lm 
boiling. 
t o r  s t ruc ture  and the  superfluid reservoi r  decreases 
s ign i f i can t ly  i f  t h i s  occurs. The power density 
required f o r  f i lm boiling13 i s  approximately 0.1 
watt/cm2compa.red tg a value of 10-3 watts/cm2 cal- 
culated using the theore%ical surface resistance.  

t i o n  i n  the  disks causes the  grea tes t  concern. 
This problem i s  accentuated by the  f a c t  t h a t  f i e l d  
emission electrons can a l s o  contribute t o  power 
d iss ipa t ion  i n  the  d isks .  Although the  s t a b i l i t y  
requirement i s  s a t i s f i e d ,  even f o r  losses  enhanced 
by a fac tor  of t en ,  it may s t i l l  be desirable t o  
provide d i r e c t  superfluid access t o  t h i s  region. 

The superfluid reservoi r  ?lays a major ro l e  
i n  providing a s tab le  thermal environment fo r  the  
cryogenic accelerator.  A t  t he  operating temperature, 
which i s  not f a r  below the  lambda point,  the spec i f ic  
heat of l i qu id  helium i s  s t i l l  very la rge .  
spec i f i c  heat a t  1.85OK i s  SJ 3 joules/gm°K, nearly 
as la rge  a s  that of water a t  room temperature. 

The thermal contact between the accelera- 

of t he  problems discussed above power dissipa- 

Tine 
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The quantity of superfluid helium tha t  sur- 
r o " s  the acce lera tor  might be 30 l i t e r s  per  foo t .  
Since the density i s  0.146 gm/cc, the t o t a l  heat 
capacity i s  1.3 X lo4 joules/OK per foot .  
capacity i s  very la rge  canpared t o  the RF energy 
stored i n  the acce lera tor  s t ruc ture  wk-ich i s  4.2 
joules per foot a t  3 MeV per foot .  
the  Introduction, tSis capacity i s  a l so  su f f i c i en t  
t o  permit long b e m  pulses i f  the  accelerator i s  
operated a t ,  say, lo$ duty cycle. 
losses  a re  t e n  tlrnes the  theo re t i ca l  losses,a pulse 
3f 20 seconds duration increases the  temperature 
of the  reservoi r  by only 0.020°K. 

f h i d  helium exhib i t s  remarkable heat transgort  
p roper t ies .  
orocess. 
heat t ranspor t  i s  qu i te  d i f f e ren t .  
the  superfluid can be considered a s  two interpene- 
t r a t i n g  f lu ids ;  one component is a ssper f lu id  
which has zero entropy and flows without v i scos i ty ,  
the  other ccmponent i s  a normal f l u i d  which car r ies  
the  f u l l  entropy of the l iquiC and exhib i t s  ncrmal 
v iscos i ty .  I f  heat i s  produced a t  one end of a 
superfluid helium "rod", the  superfluid conponent 
flows t o  the  source and there absorbs the  heat ir.  
t he  process of being converted t o  normal f i a d .  
To maintain constant density i n  the l i qu id  there  
must be a counterflaw of the normal f l u i d  component. 

"rod" a small temperature differecce occurs. This 
temperature difference i s  associated with the vis- 
cos i ty  of the  counterflowing normal f l u i d  an2 with 
vo r t i c i ty  generated i n  tke  superfluid component. 
:<eat transgort  i n  superfluid helium i s  grea tes t  
when the  density of the  superfluid component acd 
the density of the mrmal f l u i d  ccmponent a re  
approximately equal. The selected operating tem- 
perature of 1 . 8 5 O ~  l i e s  j u s t  t o  the  low temperature 
s i s e  of t he  heat t ranspor t  maxixum. As an example, 
consider 100 watts transported 100 f e e t  i n  a super- 
f l u id  ''rod" one foot i n  diameter. ?he expected 
temperature difference i s  .020°K. 
same temperature difference using high conductivity 
copper requires a rod exceeding 100 f e e t  i n  dia- 
meter. Although not per fec t  the  superfluid i s  ar. 
extremely good conductor of heat.  

t o r  does not t o  be transported the  length of 
the machine; it must only be transported t o  the  
surface of the l i qu id  where it is  r a o v e d  3y  
evaporation. 
demacd on temperature equilibrium for t he  super- 
f l ~ d  reservoi r  (within 0.020°K) i s  readi ly  achieved 

This 

As noted i n  

Even i f  the 

I n  addition t o  the  la rge  spec i f ic  heat,  super- 

In  a metal,heat transport  i s  a random 
For superfluid helium the mechanism of 

Very crudely 

For la rge  heat currents along the  superfluid 

To maictain the  

The power dissipated i n  a cryogenic accelera- 

In  any case it i s  c l ea r  t ha t  the  

E. 3efr igera t ion  

The remarkable heat t ranspor t  properties of 
superf l u id  helium guaractee adequate thermal equi- 
librium throughout t h e  helium reservoi r .  
s t i l l  required, however, t h a t  t he  pressure and 
thus the  temperature of the reservoi r  remain con- 
s tan t  for  long tjmes. 
accomplished by proper regulation of the  superfluid 
h e l i m  re f r ige ra to r .  

The very low operating temperature fo r  a cryo- 
genic accelerator i s  achieved by pumping the  vapor 
over t he  l iqu id .  
15  .mu Hg and changcs i n  t h i s  pressure of 1 m n  Hg 

It i s  

Long term s t a b i l i t y  i s  

A t  1 . 8 5 O ~  t he  vapor pressure i s  
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can De to le ra ted .  A simple form of pressure 

regula t ion  can be provided by controll ing the  flow 
i n  a bleed-back l i n e  which feeds high pressure gas 
fron the  output of the  pumping system t o  the  low 
pressure stream a t  the  pump input. 
pressure regulation can be provided by means of a 
thermal load. i n  the s u p r f l u i d  helium reservoir 
which can be varied t o  hold the reservoi r  tempe'ra- 
t u re  constant. 

Although we do not intend t o  present a detailed 
discussion of the r e f r ige ra to r ,  it i s  in t e re s t ing  
t c  consider b r i e f l y  two problems of the r e f r ige ra to r  
t h a t  a r e  created by the  lo? operating temperature. 
F i r s t ,  the punping speed 
t o  maintain the l o w  temperature i s  given by the 
r a t e  a t  which gas i s  generated (mass/sec. 1 divided 
by the  density.  For a f ixed  energy gradient ir. 
the acce lera tor  s t ruc ture ,  gas generation i s  pro- 
pmt iona l  t o  the power dissipated. a t  helium tem- 
perature which, according t o  Eq. ( k ) ,  vanishes 
exponentially. However, the density is proportional 
t o  the  pressure which, according t o  Eq. (5) ,  a l so  
vanishes exponentially. Therefore, we have approxi- 
mately 

Additional 

V (vol./sec.) required 

where both numerator and denominator vary by a 
fac tor  of 50 t o  100 between 4.2'K and 1 . 8 5 O K .  
i s  a fortunaxe coincidence tha t  the two f ac to r s  
nearly cancel leaving the pumping r a t e  essent ia l ly  
constant, independent of temperature. If a sub- 
s t a n t i a l l y  increased pmping speed were required 
a t  1.853K, the pumping system would became pro- 
h ib i t i ve ly  large.  Second, the low vapor pressure 
a t  1.85OK makes more d i f f i c u l t  the  problem of heat 
exchanging the cold escaping vapor with t h e  warm 
input stream. Nevertheless, a t  1.85:K the  heat 
exchange problem i s  s t i l l  manageble . 

It 

I!J. Limitations on the Energy Gradiect 

The F 3  power dissipated i n  the accelerator 
s t ruc ture  increases a s  the  square of the  er-ergy 
gradient.  For a conventional electron l i nac  this 
rapidly increasing power requirement l i m i t s  the 
energy gradier-t, i n  prac t ice ,  t o  2-4 MeV per foot.  
For a cryogenic accelerator the FF power dissipa- 
t i on  i s  not the p r inc ipa l  l imi ta t ion ;  the duty 
cycle of t he  cryogenic accelerator can eas i ly  be 
reduced SO t h a t  2he average power d iss ipa t ion  does 
not exceed the helium re f r ige ra to r  capacity. The 
fac tors  t h a t  detemLne the  energy gradient i n  the 
cryoger-ic accelerator a r e  the magnetic c r t t i c a l  
f i e l d  of the  supercondcctor ana loading due t o  
e l e c t r i c  f i e l d  emisshn  f roe  the surface. The 
fundamental l i n i t a t i o n s  on ene rm gradient are 
discussed i n  this section. 

* 
The f i r s t  scper f lu ic  helium re f r ige ra to r  i s  pre- 

sen t ly  being canstructed. by Arthur D. L i t t l e ,  Inc. 
The system w i l l  remove 300 watts a t  l . 8 5 O K .  
totype of this,system has already been operated. 

A pro- 
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A .  C r i t i c a l  Magnetic Field 

i en t  t he  RF magnetic f i e l d  a t  the  surface of the  
accelerator s t ruc ture  w i l l  exceed a c r i t i c a l  value 
and the  superconducting s t a t e  w i l l  be quenched. 
This c r i t i c a l  magnetic f i e l d  represelfsafundamental 
l imi ta t ion  on the energy gradienc t h a t  can be achieved 
i n  a cryogenic accelerator.  

The behavior of superconductors i n  the  pre- 
sence of la rge  RF magnetic f i e l d s  i s  not as we l l  
understood a s  the dc case. In  the  present discus- 
sion we w i l l  assume tha t  the  known dc behavior of 
superconductors can be extrapolated t o  RF. 
mental information obtained thus f a r  i s  consistent 
with tbAs assumption. 

A t  dc the  superconducting s t a t e  i s  quenched 
a t  a magnetic f i e l d  l e v e l  which i s  determined by 
the  Gibbs f r ee  energies of the  superccnducting 
and the  normal s t a t e s .  This f i e l d  l e v e l  i s  called 
the c r i t i c a l  magnetic f i e l d ,  Hc, and depends on 
tenperature as  

Z t  i s  t o  be expected t h a t  f o r  some energy grad- 

Experi- 

T2- T2 
H = H  (3) (10) 

T,' c o  

where Tc i s  the superconducting t r ans i t i on  tem- 
perature.  The c r i t i c a l  magnetLC f i e l d  i s  zero a t  
Tc and increases monotonically t o  Ho a t  
Values of Ho and; H$ ( 1 . 8 5 O ~ )  f o r  lead and 
niobium are given ,n able 111. 

T = 0 .  

TABm I11 
Magnetic Field Limitations on Energy Gradient 

Metal Ho Hc(l.8S0K) Rs(Hc) E(SW) E(W) 
gauss gauss Mev/ft Mev/ft 

Pb 800 750 1.8 6.5 10.5 
~~~ - 

Nb 1940 1860 3.3 16 26 

For la rge  magnetic f i e l d s  the  superconducting 
energy gap decreases; 
increase i n  the surfaae res i s tance  a t  increasi-2g 
RIF f i e l d  leve ls .  'Bis increase can be 

thus  we might expect an 

estimated using the  Ginzburg-Landau theory of 
supercon3uctivity." The magnetic f i e l d  dependence 
of the  Ginzburg- ndac superconducting order 
parameter, @, i s  Bi 

where K i s  a p p r o x k t e i y  &/e. The penetration 
depth X and the  energy gap E are  re la ted  t o  the 
order parameter; we have approximately: 
and E 0: v.  Since a t  l o w  temperatures 
Rs a X2 exp(-~/2kT), the  f ac to r  by which the surface 
res i s tance  increases with increasing f i e l d  l eve l  
can be calculated.  The r a t i o  Es(Hc)/Rs(0) fox 
lead and niobium a t  l.85OK i s  given i n  Table 111. 

X L Jr-l 

)c 
The GinzSurg-Landau theory i s  s t r i c t l y  correct 

only f o r  temperatures near T,. 

To determine the  a c t u a l  behavior of  supercon- 
ductors i n  the  presecce of la rge  RF magnetic f i e l d s  
we have made measurements'5 on t i n ,  lead, and 
niobium. O f  these  measurements t h e  most de f in i t i ve  
a re  those f o r  t i n .  A t  2856 MHz t he  surface r e -  
s i s tance  of t i n  i s  observed t o  be constant within 
20% f o r  R F  f i e l d  l e v e l s  smaller than the dc c r i -  
t i c a l  magnetic f i e l d .  This behavior i s  consistent 
with the  fac tor  Rs(Hc)/Bs(0) = L 2  calculated f o r  
t i n  on the  bas i s  of t he  Ginzburg-IaEdau theory. 
When the  RF f i e13  l e v e l  exceeds the  dc c r i t i ca ;  
f i e l d  the  surface res i s tance  i s  observed t o  make 
a sharp t r ans i t i on  to t he  normal s t a t e  value. A s  
a r e s u l t  of heating e f f ec t s ,  measurements on lead 
and niobium extend only t o  f i e l d  l eve l s  of 0 . 5  Hc 
and 0.1 Xc respectively.  
t o  higher f i e l d  l eve l s  a r e  i n  progress. 

lead and niobium i n  the  presence of la rge  Rr'mag- 
n e t i c  f i e l d s  w i l l  be s imi la r  t o  t h a t  observed for 
t i n .  
t h a t  can be achieved i n  a cryogenic accelerator i s  
given i n  Table 111. Values a r e  given f o r  both a 
standing wave bi-periodic ?T/2-mode s t ruc ture  and 
a t rave l ing  wave simple periodic ir/2-mode s t ruc ture .  

Experiments ex tendkg  

We assume t h a t  t he  behavior of superconducting 

The implied limitation on the  energy gradient 

3. Loading Due t o  X e l d  Emission 

For la rge  energy gradients t he  e l e c t r i c  f i e l d  
a t  t he  w a l l s  of an acce lera tor  s t ruc tu re  can be 
su f f i c i en t  t o  cause an appreciable f i e l d  emission 
current.  The emitted electrons absorb energy from 
the  Rp e l e c t r i c  f i e l d  and upon s t r ik ing  the  struc- 
t u r e  wal l s  convert t h i s  energy t o  hea t .  Since the  
heat i s  generated a t  helium temperatures, the f i e l d  
emission current must be kept small. 

Preliminary measurement d6 on superconducting 
lead cav i t i e s  operating i n  the %lo mode indicate 
t h a t  peak e l e c t r i c  f i e l d s  of 1 .5  X 105 volts/cm* 
can be obtained before electron loading becomes 
important. This value of  the  f i e l d  i s  achieved by 
moderate processing; t he  cavity i s  overcoupled 
(aL== 107) and the  iccident power i s  increased. 
Observation of the  power re f lec ted  frmn the cavi ty  
reveals e l e c t r i c a l  noise but no sparking ir the 
sense t h a t  the energy stored i n  the  cavity i s  l o s t  
i n  a discharge. A t  t he  present t i n e  an extensive 
inves t iga t ion  of the  behavior of superconducting 
surfaces i n  the  presence of large e l e c t r i c  f i e l d s  
i s  being planned. The discussion below i s  sugges- 
t i v e  of what could hopefully be achieved i n  these 
investigations.  

experimental conditions the  dc e l e c t r i c a l  break- 
down f i e l d  i s  observedl7 t o  be = 7 X 107 volts/cm 
i n  metals such a s  tungsten. For smaller values of 
the  e l e c t r i c  f i e l d  the  f i e l d  emission cwren t  
follows the  F'owler-Kordheim theory. Enhanced f i e l d  
eQission currents acd much s m l l e r  dc breakdown 
f i e l d s  are observed f o r  broad area electrodes.  The 
degradea performance of broad area electrodes might 
be a t t r i bu ted  t o  any cne of several  mechanisms. 
The m x t  c l ea r ly  Cefined of these mechar-isms i s  
f i e l d  enhancement st sharp projections on the s u r -  
face  of the electrodes.  It has been s h m "  t h a t  
t he  e l e c t r i c  f i e l d  a t  such pro jec ts  can be enhanced 

* The e l e c t r i c  f i e l d  a t  the surface i s  probably 50% 
higher than the value quoted above; the f i e l d  i s  
enhanced i n  the v i c in i ty  of a cutoff hole in  the 
cavity.  

For a point-to-plane geometry and f o r  optimai 
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by f ac to r s  as la rge  a s  200. Although an enhance- 
ment of 200 f o r  our supercofiducting cav i t i e s  gives 
a reasonable breakdown f i e l d  it must be emvhasized Varian Associates. 

7. Niobium cav i t i e s  have been prepared f o r  us by 
the  Linde Division of Union Carbide and by 

that the  mechanism by which f i e l d  emission-is en- 
hanced i n  our cav i t i e s  i s  not established. Enhance- 
ment due t o  sharp projections,  surface contanination 
e t c .  m i g h t  a l l  contribute.  

It i s  l i k e l y  t h a t  t he  maxi" e l e c t r i c  f i e l d  

8. J.M. Pierce,  H.A. Schwettman, W.M. Fairbank, 
and P.B. Wilson, Proceedings of the  Ninth 
In te rna t iona l  Conference on Low Temperatwe 
Physics (Plenum Press, New York, 1965), p. 396. 

t h a t  has been achieved i n  room temperature cavi t ies  9. G.K. White, Proceedings of the  Eighth In te r -  
provides t h e  bes t  ind ica t ion  of what can be ex- 
pected ult imately i n  a superconducting cavity.  

na t iona l  Conference on Low Temperature Physics 
(Butterworths, Washington, 1963), p .  394. 

Although the  very low operating temperature may 
influence s u c h ~ n g s  as whisker growth and surface 
contamination, the  f i e l d  emission current for  a 
given surface i s  nearly independent of temperature 
and nearly independent of whether the  metal  i s  i n  
t he  superconducting s t a t e  o r  t he  normal s ta te .19  
The highest e l e c t r i c  f i e l d  l e v e l  achieved i n  a 
copper cavity,  28 the bes t  of our knowledge, i s  
SJ 106 volts/cm. If f i e l d s  of t h i s  magnitude can 
be obtained i n  a cryogenic accelerator,  extremely 
high energy gradients a re  possible.  In  the  stand- 
i n  wave bi-periodic T/2-mode s t ruc ture  f i e l d s  or" 
10 volts/cm correspond t o  an energy gradient of 
1 5  MeV per foot .  

10. R.L. Powell and W.A. Blacpied, Nat '1 B u r .  

11. L.J .  Barnes and J .R .  Dill inger,  Phys. Rev. 

Standards Circ. 556 (1954). 

Le t te rs  ID, 287 (1963). 

12. R.C. Dohnson and W.A. L i t t l e ,  Phys. Rev. 150, 
596 (1963). 

13. R.M. Holdredge and P.W. McFadden, Advances i n  
Cryoge-dc Engineering, V c l .  2, (Plenum Press, 
New Yerk, 1966), p .  507. 

E.A. Lynton, Superconductivity (John Wiley and 
Son Inc., New York, 1962). 
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