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Summarv 

It i s  shown that the frequency-dependent 
input impedance of a lossless  distributed network 
may be represented by the frequencies of the input 
impedance poles and zeros. Then, given the net- 
work reactance at a single frequency other than 
that of a pole o r  zero, one may apply Foster ' s  
reactance theorem to d termine the input imped- 
ance at any frequency. Using the frequency- 
dependent impedance representation, one may 
calculate the response of the system to any peri-  
odic driving function. 

General Considerations 

In the design of radio-frequency accelera- 
tion systems, the problem of a power amplifier 
connected to a distant reactive load by means of 
a transmission line may occur. The response of 
such a system t o  a periodic current pulse that i s  
short in duration with respect to an RF cycle i s  
of interest  to the designer. For  instance, a 
particular harmonic of the current waveform may 
excite a unwanted mode in the system being con- 
sidered. "3 

It i s  necessary to know the frequency de- 
pendence of the input impedance of the two-termi- 
nal system in order to calculate the response. 
For all but simple systems, the description of the 
impedance variation with frequency i s  usually a 
formidable task. 

I t  i s  often relatively easier to specify or  
determine the frequencies at which the input im- 
pedance (for a lossless system) has an infinite 
value, called poles, and the frequencies a t  which 
the input impedance i s  zero, called zeros. This 
l i s t  of frequencies of the poles and zeros and the 
value of the input reactance a t  a given frequency 
completely specifies any two -terminal network 
composed of a finite number of reactive compo- 
nents, as shown by Foster.  Others have shown 
the equivalence between lumped constant circuits 
and transmission lines. 4 9  

stant circuits a re  pure reactances for a lossless  
line. 

These lumped-con- 

The application of Foster ' s  reactance theo- 
r e m  to a transmission-line system, which has an 
infinite se t  of poles and zeros,  requires a consid- 
eration of the convergence of the infinite product 
formed. 
attached appendix. 

The convergence i s  proved in the 

* Work done under auspices of the U. S. Atomic 
Energy Commission. 

California 

A Particular Case 

To illustrate the analysis of a distributed 
system by the pole-zero method, we shall con- 
sider the case of a transmission line of uniform 
characteristic impedance Zo, and length J ,  which 
is shorted a t  the f a r  end. The input impedance of 
this two-terminal system is obtained by consider - 
ing the input-impedance poles and zeros. 
result  i s  compared with the input impedance ( Zin) 
derived from the transmission-line equations. 

This 

Applying the transmission-line equations, 
one obtains 

Z. (w) = j Z  tan wf/v [from transmission-line 
( 1) 

0 in equation] 

where v i s  the velocity of propagation of a funda- 
mental mode {TEM) wave on the transmission 
line. 

Input-impedance zeros (6) a r e  obtained at 
w = 0, and w = nnv/J, where n = 1, 2,3 .. . . 

(n  - .t/2), where n = i, 2 , 3  . . . . Input-impedance poles (p)  a re  found a t  
w = 

Let Sn = n, and p n  = ( n  - i /2 ) .  

The input impedance obtained bv use of 
Foster ' s  equation is  

L2 - ( s n n v / m  
Zin(w) = joH.ll [from 

n=i [wz - (p , ,~rv /J )~]  Fos te r ' s  __ e quation] 

( 2 )  
m where ll n=i indicates an infinite product with 

n = 1, 2,3 . . . . In order to show the equivalence 
between Fos te r ' s  equation and the transmission- 

Now H may be evaluated by considering Zin 
a t  a particular normalized frequency s = so, where 

Solving Eq. ( 3 )  for H at  s = so: we get 

so # 5, and so # Pn '  

If we le t  H '  = PZo/v, we obtain 
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then from Fosters equation we see that 
( s 2 / c i  - 1) [from 

(s /pn - 1) 
zin(s) = j n s Z ; n i = l  Foster 's  

equation] , 

( 6 )  

One may show that 

xm 2 2  n = l  w - p n  

6 by use of the Weierstrass factor theorem. 

Therefore, the above impedance expression 
is equivalent to that obtained from the transmis- 
sion-line equation, and for the particular case 
shown 

z i n ( w )  [from transmission-line equation] 
2 .  (w) [from Foster 's  equation]. in 

Conclusions 

We have demonstrated how the continuous 
impedance expression of a lossless system may 
be represented by a set  of discrete points. This 
representation for a lossless system is extremely 
useful, because most well-designed real  systems 
have negligibly small losses. In practice, one 
would identify a finite number of impedance max- 
ima and minima, and with the aid of a computer, 
generate the system voltage waveforms where 
desired in response to a given current input wave- 
form. 

We find that this product does not always 
For  example, if  C n  = a - n  and converge. 

p n  = a * (n  - i), we must consider 

(A31 
where a is some arbitrary constant. 

But, for any fixed w (even i f  we exclude 
values of w close to any of the poles), this series 
majorizes (i. e.,  termwisq, it equals or exceeds 
in absolute value for sufficiently large n) the well- 
known divergent ser ies  

(A4) 
k Em ii' 

n = l  

where k = 1/2,-for example. 

We now show that a revised form of Foster 's  
formula can be extended t o  the infinite case under 
the following hypothesis, which includes many 
useful examples, including the one just considered. 
Let us  write 

where 
" 2  

N 4n H' = Hennzl - 2 '  
Pn 

Since H, and therefore HI, i s  a constant (indepen- 
dent of w), we see by considering a particular f re -  
quency w = w, that 
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Appendix 

When we attempt to extend Foster ' s  formu- 
l a  

(where c n  a re  the zeros of Z inandpn  are the 
poles) to the infinite case ( N  --c m ) ,  we must study 
the convergence of the infinite product which, 
according to the factor theorem of Weierstrass, 
depends upon the convergence of the following 
infinite sum6: 

Now formulas (A5) and(A7) Wiu provide a rep-  
resentation for Zin(w) in the infinite case ( N  -. m )  

also, provided that the infinite products a re  con- 
vergent. 
theorem of Weierstrass to be valid) that neither 
the zeros (5,) nor the poles (p,) have a finite 
accumulation point. This means, in particular, 
that only a finite number of the poles and zeros 
have magnitude less  than any given (large positive) 
R. We are  interested in the uniform convergence 
of the formulas for all w in some (finite) compact 
set  n which excludes the poles: For instance, let  

minus a small neighborhood of fixed size about 
each pole. As in Foster 's  paper, we assume that 
each pole and zero i s  of order one, and that sym- 
metry allows us to combine the factors in pairs 
such a s  cn = - 5 ,  in order to form the connection 
between Eq. (A5fand the Weierstrass factor theo- 
rem. 

We must assume ( i n  order for the factor 

be a circle of finite radius centered at  the origin, 

The convergence of Eq. (&) depends upon the 
convergence of the following infinite sum: 
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n=l  

But in our compact set  S2, 
( -48) 

this sum Eq. (A8) 
is majorized uniformly (i. e . ,  independent of o, 
so  long a s  w E Q) by 

2 where k is some number k 3 2  - I w Ima on D. 
Let N be so large that all for n > N  gave a 
magnitude exceeding 2 ) w k b x  (which is possible 
since the poles have no inite accumulation point). 
Then Io - p n I 7  l p n / 2 ) ,  so 

and 

\Al l )  
(as required) for n > N. 

Hence, a sufficient condition fo r  the validity 
of Eq. ( A 5 )  in the infinite case is  the convergence 
of the sum 

This condition is readily verified in  the example 
6 ,  = a - n ,  p n  = a - ( n  - 3 ) :  We have 

and the sum of (A12) is  majorized by the conver- 
gent se r ies  
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