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Introduct ion 

The proposed AGS Conversion Program' requi res  
accelerated peak beam curren ts  i n  excess of 100 mi 
from the 200-MeV i n j e c t o r  l inac.  With t h i s  high 
accelerated current  t h e  d ispers ive  proper t ies  of 
t h e  acce lera t ing  s t ruc ture  play an important r o l e  
i n  determining the  qua l i ty  of the accelerated beam, 
s ince  the  phase and amplitude t r a n s i e n t s  r e s u l t i n g  
from the  RF pulse  applied t o  compensate f o r  the  
beam load a r e  d i r e c t l y  r e l a t e d  t o  these propert ies .  
The Alvarez s t r u c t u r e  has a good bandwidth which 
may be enhanced by use of mult iple  stems2 and t h e  
t r a n s i e n t  and steady s t a t e  f i e l d  v a r i a t i o n  with 
cavi ty  length may be reduced by t h e  use of mult i -  
p l e  feed points.  Both of t h e s e  e f f e c t s  a r e  inves-  
t iga ted  i n  t h i s  report .  

Dispersion Relations f o r  the  Multistem Cavity 

I n  a recent  paper2 Giordano and Hannwacker 
have measured and discussed a s e t  of modes asso-  
c ia ted  with resonance i n  the  circumferent ia l  
f i e l d s  of the  stem system. These modes, denoted 
TS(N)iO&, couple to  the usual 'IMol& modes and lead 
t o  the  shaping of t h e  d i spe r s ion  curve about t h e  
lM010 resonance. Note t h a t  these  a r e  t h e  same 
type of modes discussed by Carne e t  a l .  i n  t h e  
treatment of t h e  crossbar s t ructure .3  
p o r t  the  coupled d ispers ion  curves €or TS and IM 
modes a r e  considered i n  terms of an equivalent 
c i r c u i t  f o r  the  multistem s t ruc ture .  It has been 
shown4 t h a t  the  lumped c i r c u i t  constants  d e t e r -  
mined f r a n  t h e  measurement of Giordano and 
Hannwacker have a reasonable Ndependence f o r  
N - 1, 2, 3 and 4 stem s t ruc tures .  

Equivalent C i r c u i t  

I n  t h i s  re- 

An equivalent c i r c u i t  f o r  t h e  normal d r i f t  
tube s t ruc ture  has been given by Rerewards i n  a re- 
p o r t  concerning energy propagation along t h e  l inac.  
This c i r c u i t  has  been modified t o  include t r a n s -  
verse stem resonances a s  shown i n  Fig. 1. Here 
t h e  s e r i e s  capacity C,  represents  gap capaci ty ,  a d  
series inductances,  2 x Lf2 represent  the  induc- 
tance which s t o r e s  the  magnetic energy surrounding 
t h e  d r i f t  tube and gap. Then t h e  resonant f r e -  
quency of t h e  'IMolo mode i s  given by 

2 1  
wo = E 

Also the  shunt capaci tor  C,, represents  the  capaci-  
tance between t h e  d r i f t  tube and outer  cyl inder  
(including stems) and t h e  shunt inductances, 
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2Ls x 112 represent  the  inductance due t o  the  loop 
consis t ing of t h e  stems and t h e  outer  cylinders.  
Ls and C s  give t h e  t ransverse stem resonance. 
general  t h e  stem-loops associated with a d r i f t  
tube w i l l  couple t o  those of the adjacent tubes 
giving a mutual inductance Ms between them. (Note 
t h a t  here  the  s t r u c t u r e  d i f f e r s  from the crossbar,  
where M, i s  zero due t o  t h e  r o t a t i o n  of a l t e r n a t e  
bars  by 900, but where there  is  mutual coupling 
between a l t e r n a t e  sets of bars.) It w i l l  become 
evident l a t e r  t h a t  t h e  resonant frequency of the  
TS(N)100 mode i s  given by 

I n  

w* p: 1 2LS 
s LsCs 2Ls + M s  

Let V be t h e  p o t e n t i a l  between the d r i f t  tube 
and ground (outer  cyl inder)  and I t h e  current  from 
l e f t  t o  r i g h t  through t h e  d r i f t  tubes  and gaps, 
and, fur ther ,  we wr i te  t h e  shunt current  from 
d r i f t  tube center  t o  ground aa i and divide it 
i n t o  three  components i , 12 and 13, corres-  
ponding t o  t h r e e  shunt elements, 2Ls, C, and 2Ls 
respect ively.  Then from Floquet ' s  theorem f o r  the 
per iodic  s t ruc ture ,  the  vol tages  and currents  a r e  
a l l  mult ipl ied by ef? when we move down the  s t ruc-  
t u r e  by one period. 
s h i f t  and i s  given by Wo, where k i s  the  propa- 
ga t ion  constant and Lo t h e  c e l l  length. The v o l t -  
ages and cur ren ts  a r e  re la ted  by 

cp i s  the  c e l l - t o - c e l l  phase 

From Eqs. (4), (4') and (4") 

i = i  + i 2 + i 3 =  1 

4Ls (1 
(4L'. - M f ) C s  

C 
= j ;;s [w2 - 

( 4 )  

(4 '1 

(4') 

we have 

Ms 
2LS 

- - cos cp)] vo . 
( 5 )  

Since the shunt cur ren t  is given by Io(e-jcp-l>, we 
can el iminate  Vo and Io from Eqs. (3) and (5) t o  
give the d i spe r s ion  equation 

2 2  2 2  
[w -.,]{U -WS c 1 +  d1 - cos cp) I] 

2 ( 6 )  
B ( l  - cos cp) = 

wo 
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where 

B = 2  /j /? /= 
2L s S 

and 

MS 
2Ls - Ms E =  

(7 )  

The behavior of t he  dispers ion curves shows t h e  
same types of advantages i n  reducing beam loading 
and detuning e f f e c t  a s  described by Nishikawa, 
Giordano and Carter f o r  a l t e rna t ing  per iodic  
s t ructures .6  The d i spe r s ion  equation has  two solu- 
t i o n s  f o r  cp = 0 (zero mode), w = wo and w 5 us, 
I n  general  two passbands e x i s t  descr ibing and 
TS(N)IO type modes and are separated by a stopband 
between wo and ws. 
wo = us, these bands merge t o  a s ing le  passband 
and give a f i n i t e  group ve loc i ty  

For the spec ia l  case of 

For wo # w s  t h e  group ve loc i ty  vanishes and 
t h e  mode separation between the lMo10 and TM011 
modes approximates t o  

funct ions obtained from t h e  f i e l d  i n  an idea l  
cavity. 
separated from i t s  nearby modes, then normal mode 
ana lys i s  i s  a useful  method by which the  var ious 
e f f e c t s  caused by in t e rac t ions  o r  per turbat ions 
within t h e  cav i ty  may be examined. In t h i s  report  
both steady s ta te  and t r a n s i e n t  phenomena a r e  
studied f o r  a cavi ty  excited by a well-padded gen- 
e r a t o r  and with a bunched beam passing along the  
axis.  
erence 7. 

I f  such a normal mode i s  w e l l  defined and 

A more de ta i l ed  treatment i s  given i n  r e f -  

Normal Modes i n  a Long Cavity 

Taking the  normal e l e c t r i c  f i e l d ,  E,(z,r,B) 
the  ac tua l  f i e l d  may be expressed a s  

2n (z , r , e , t )  = 1 Vn(t) gn(Z,r ,e)  . (11 
n 

Prom Maxwell's equations and orthogonal r e l a  
t i ons ,  t h e  expansion coe f f i c i en t  of Vn(t) s a t i s -  
f i ed  the  equation of forced o s c i l l a t i o n s  ,8 

d2V - n z  - + run vn = 
d t  

n 

where no i s  the  t o t a l  number of ce l l s .  Since t h e  
separation given by Eq. (10) increases  l i nea r ly  a s  
ws approaches wo, t h e  advantages of  reduced sensi-  
t i v i t y  t o  beam loading, tuning e r r o r s  and other  
per turbat ions f o r  a s t r u c t u r e  which i s  adjusted t o  
near enough t h i s  frequency a r e  assured. 

By using measured frequencies f o r  wo and ws 
and, i n  addi t ion,  values  f o r  t h e  Tmode of  TS band 
and t h e  .rr/ 2 mode of t h e  TM band f o r  t he  one and 
four  stem s t ruc tu res ,  and the  TT mode of t h e  TS 
band and t h e  nf3 mode of t h e  IM band f o r  the two 
and th ree  s t e m  cases, i t  i s  possible  t o  determine 
the  parameters wo, (US, B and E , and hence p l o t  
t he  d i spe r s ion  curves f o r  1, 2, 3 and 4 s t e m  s t ruc-  
t u r e s  a s  i n  Fig. 2. The so l id  curves show t h e  
calculated curves and t h e  po in t s  indicated by c i r -  
c l e s ,  t r i ang le s ,  squares and crosses  a r e  the  mea- 
sured frequencies;  those heavily wr i t t en  show t h e  
po in t s  used f o r  t h e  calculat ion.  The va r i a t ions  
of B y  ws and 
given i n  Fig. 3. 

E with the number of  stems N are 

F ie ld  Exci ta t ion 

The Alvarez s t r u c t u r e  used i n  e x i s t i n g  proton 
l i n a c s  u t i l i z e s  a standing wave configuration i n  a 
long cav i ty  which is s imi l a r  t o  t h e  IMo 
a c y l i n d r i c a l  cavity.  The f i e l d  d i s t r i i u t i o n  i n  
such a cavi ty  i s  a complex function of .  such f a c t o r s  
a s  beam loading, d r i f t  tube loading, w a l l  l o s ses  
and o the r  per turbat ions.  However, i t  i s  possible  
t o  expand t h e  ac tua l  f i e l d  i n  terms of t h e  normal 
modes which form a complete orthogonal set of 

mode i n  

The f i r s t  term on the  r i g h t  hand s ide  i s  i n t e -  
grated wer the  non-ideal conducting surfaces,  S ,  
such as glossy m e t a l l i c  walls of the cavity.  By 
means of t he  standard evaluat ion of Qo from wall  
losses ,  t h i s  can be r ewr i t t en  a s  a damping term, 

-(1 + j )  % . dVn 
Qo d t  

The surface i n t e g r a l  i n  t h e  second term i s  per- 
formed over t h e  non-ideal open surface,  S ' ,  and 
gives  t h e  e f f e c t  of coupling the  cavi ty  t o  an ou t -  
s i d e  system. One p a r t  of t h i s  term g ives  the  
forced o s c i l l a t i o n  by an ex te rna l  source and the  
o the r  add i t iona l  damping due t o  c i r c u i t  losses 
(a lfQext). E f fec t s  of t h e  beam within t h e  cav- 
i t y  a r e  represen$ed by the  l a s t  term where the  
current  dens i ty  J a t  a point  i s  mult ipl ied by the 
normal e l e c t r i c  f i e l d  a t  t h a t  point  and integrated 
over t h e  cavi ty  volume. Consider f i r s t  of a l l  a 
cavity with no beam exci ted by a well-padded gen- 
e r a t o r ,  then Eqs. (12) and (13) give 

n 
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where Q,, 

and 

2, i s  t h e  
guides i n  

QextYn and Kn are given by 

L = L + -  1 

Qn Qon Qext,n 
,7 

1 -e- 

Qext,n ' 'nZo 

Q 
Kn = 2 

Qo ,n 

c h a r a c t e r i s t i c  impedance of t h e  wave- 
which only one propagating mode i s  a s -  - 

sumed. A t  t h e  surface,  S I ,  the  cavi ty  normal mode 
f i e l d ,  
component of  t h e  waveguide mode 2, 

is re la ted  t o  the normal tangent ia l  

4 gn = Une (Un i s  a real coeff ic ient) . (18)  

Assuming t h e  R, mode resonant frequency to be given 

(19) 
by 1 

U)' = w a  (1 - 2 QOQ) .e 

we may obtain the  equation f o r  forced o s c i l l a t i o n  
of t h e  resonant mode (n=R,) a t  resonance a s  

U: 
2 

juit (20) Vk = A  Uk e - '," + (1 -I- jK ) 
d t  Q, 

and f o r  nonresonant modes (n # .E) 

2 

d t  
j w d t  + wn Vn = A U, c_ n dVn 2 '; -+ ( I  4- jKn) - d t  

These equations can be solved f o r  a s tep 
funct ion incident  wave (A = 0 f o r  t S.0 and 
A - constant f o r  t > 0) and Vn = 0 = Vn a t  t = 0, 
t h e  so lu t ion  involving terms having angular  f r e -  
quency % represent ing f r e e  o s c i l l a t i o n s  induced 
by t h e  t r a n s i e n t  and terms involving W J  which are 
forced o s c i l l a t i o n s  f o r  both the  t r a n s i e n t  and 
steady s t a t e .  I n  order  to determine t h e  f i e l d  i n -  
s i d e  a d r i f t  tube cavi ty  i t  i s  necessary t o  assume 
a proper  boundary condition a t  S' which leads  t o  
an evalu t ion  of U,. 
end of t h e  cavi ty  ( z  = 0) then t h e  nearby modes 
have near ly  the  same normal mode f i e l d  p a t t e r n s  a t  
S '  a s  f o r  the  resonant mode, so a l l  modes a r e  ex- 
c i t e d  i n  phase a t  z = 0. 
n's. 

I f  t h e  power i s  fed from one 

Thus, except f o r  high 

U, =n uo (22) 

For a cavi ty  coupled a t  any o ther  point  ( z  feed) 
i n  the cavi ty  the va lue  of U, w i l l  depend on the 
z dependence of the  mode i n  quest ion and w e  may 
write 

Note that this may be i n  
loaded cavi ty  due t o  the 
of d r i f t  tubes  along t h e  

Steady S t a t e  Field 

Assuming t h a t  

e r r o r  f o r  a d r i f t  tube 
asymmetric d i s t r i b u t i o n  
cavi ty  ax is .  

, 2 ,  U) ,CUn 

Qn 
-a<< - U ) i  , 

n 

we get  the  steady s t a t e  so lu t ion  of 

( 2 4 )  where 

*eou, Qo 
Eo = ,2 

and F- i s  a normalization constant. 
term i n  t h e  bracket a r i s e s  from the  resonant zero 
mode, and t h e  o thers  from higher  modes. Each 
higher  order  mode is 90' out  of phase with the 
resonant mode leading t o  t h e  phase s h i f t  and amp- 
l i t u d e  change along t h e  length.  

Transient F i e l d  

The f i r s t  

In  t h e  f i r s t  order  approximation f o r  a t ran-  
s i e n t  s t a t e  t h e  bui ld  up curve of the  resonant 
mode (n = 0) i s  from the  so lu t ion  of  Eq. ( 2 0 ) .  

whereas f o r  a nonresonant mode (n f 0, n << L/Lo) 
t h e  term 

i s  given from the so lu t ion  of Eq. (21). Equa- 
t i o n  (27) shows wiggles which a r i s e  from t h e  beat  
between t h e  f r e e  o s c i l l a t i o n s  of t h a t  mode and t h e  
dr iv ing  force ,  the angular frequency of the  beat  
beam 

non = U); - U); . ( 2 8 )  

for a cavi ty  coupled a t  a s ing le  point  ( z  feed) we 
have 
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w 't 
X(z, t )  - 1 - e - 0 

240 

w '  s i n  ant w i t  
'on 'Q n 

nn z feed cos E 

(30) 

L L -0 1 e - -  . cos 

n r l  QO 

n 

(1-e 29, cos non') 
nn zfeed n m  - cos .bas - 

"on L 

-- '0 (1-e 
Qext,O 

The amplitude 
by 

(E(zat) I 
and 

nn z feed nm 

cos 1 . 
CO s 

'on na l  

nn z feed nm w:t , - cos cos 7 

(31) 

and phase of the  f i e l d  a r e  now given 

. 
(32) 

2 (Z,.t) + Y2(z,t)  

Calculated values  of X(z, t )  and Y(z, t )  a t  t he  cen- 
t e r  of t he  AGS l inac ,  f o r  modes up t o  TM014 a r e  
shown i n  Figs. 4a and 4b respect ively.  Measured 
values of frequencies and Q ' s  a r e  used f o r  the 
computation, Figure 5 shows the calculated phase 
t r ans i en t  between the  center  and input  of t h e  cav- 
i t y .  
lM011 and TM013 modes, 
loop i s  not a t  the  e l e c t r i c a l  cen ter  of the  cavity 
so there  i s  some coupling t o  these modes r e s u l t i n g  
i n  the  t r ans i en t  phases between center  and ends of 
t he  cavi ty  shown i n  Figs. 6a and 6b. The steady 
s t a t e  phase and amplitude v a r i a t i o n  f o r  these  
center-fed and near-center-fed cases  a r e  shown i n  
Figs. 7a, 7b, 8a and 8b respect ively where measured 
values a re  a l s o  presented, 

Multiple Feeds 

This ca lcu la t ion  assumes zero coupling t o  the  
I n  prac t ice  the  coupling 

A reduction of the  t r ans i en t  and steady s t a t e  
amplitude and phase v a r i a t i o n s  along the  cavi ty  
length may be achieved by feeding power i n t o  the  
cavi ty  a t  mre than one point.  For example, by 
feeding i n  phase a t  the  L/4 and 3L/4 p o i n t s  t he  re -  
su l t i ng  summed f i e l d s  a r e  zero f o r  a l l  modes where 
n # 0, up t o  and including 'It4014 so a considerable 
reduction i n  amplitude and phase v a r i a t i o n  i s  
achieved. Typical r e s u l t s  f o r  t h i s  case are shown 
i n  Figs. 9a and 9b f o r  the  t r ans i en t  case and 
Figs. 10a and 10b f o r  t h e  steady s t a t e  solut ion.  

Beam Loadinz i n  a D r i f t  Tube Accelerator  

Nishikawa' has  shown t h a t  t h e  beam loading i n  
a d r i f t  tube cavi ty  gives rise t o  a decrease i n  

i n  f i e l d  s t rength on the  ax i s  which i s  given by 
t h e  r e l a t ion  

(34) 

where Io = beam current  averaged over bunches, 
yb - phase angle at  center  of beam bunches, 
To = t r a n s i t  time fac to r ,  fo i s  a form fac tor  
given by s in  &p/2/%/2 fo r  a short  bunch with a 
constant phase spread 9, reo i s  the  shunt imped- 
ance per un i t  length of the  s t ruc ture ,  Qoo the  un- 
loaded Q value and t '  = t - to where to  i s  time a t  
which the  beam s t a r t s ,  I f  t he  beam pulse length 
tw i s  l e s s  than the  build-up time t h i s  e f f e c t  i s  
of a t r ans i en t  nature and g ives  r i s e  t o  an almost 
l i n e a r  decrease i n  the  acce lera t ing  f i e ld  with 
t i m e  . 

To obtain a good energy spectrum it i s  cus- 
tomary t o  increase the  input beam power during t h e  
beam pulse by an amount equal t o  the'beam power. 
This e x t r a  energy may be added as a s tep  function 
o r  a ramp funct ion both of which give rise t o  a 
t r ans i en t  response i n  the cavi ty  due t o  exc i ta -  
t i o n  of nonresonant modes (n # 0). The beam i t -  
s e l f  gives very small e x c i t a t i o n  t o  these higher  
order  modes, so compensation cannot be achieved 
f o r  these modes. Therefore a phase and amplitude 
d i s t r i b u t i o n  within the  beam pulse  period r e s u l t s  
from the  addi t ion  of t h e  e x t r a  beam compensation 
energy. These phase and amplitude e f f e c t s  w i l l  
vary with pos i t ion  along the  cavi ty  length due t o  
the  normal f i e l d  d i s t r i b u t i o n s  of  the  higher order  
modes. The calculated and measured phase and amp- 
l i t u d e  s h i f t s  between the  center  and ends of the  
AGS l i nac  f o r  an optimum compensation p u l s e  a r e  
shown i n  Figs. l l a  and l l b ,  where a 30 mA peak 
beam current  was being accelerated.  

Conclusions and Observations 

The normal mode ana lys i s  of standing wave 
l i n a c s  has been shown t o  give a good representa-  
t i o n  of t he  f i e l d s  ex is t ing  in s ide  the resonant 
cavity. I n  making the  ca lcu la t ions  it has  been 
assumed t h a t  the  presence of d r i f t  tubes does not 
s u b s t a n t i a l l y  a f f e c t  the  expressions represent ing 
t h e  ax ia l  components of t he  normal mode f i e lds .  
The assumption of a well-padded generator allows 
t h e  e f f e c t s  of source impedance on the  cavi ty  
build-up t o  be neglected,  E f f e c t s  due t o  a non- 
uniform beam bunch and space charge e f f e c t s  of a 
high current  beam l i n e  have a l s o  been neglected.  
The improved f i e l d  d i s t r i b u t i o n  r e s u l t i n g  from a 
double feed t o  the  cavi ty  has  a l s o  been 
demonstrated. 
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Fig. 2. Comparison between measured and calculated 
dispersion curves. Pairs of measured fre- 
quencies for  the same modes of 4 stem cases 
were obtained by different end terminations. 
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Fig. 5. Transient phase shift between low energy end 
and center of AGS cavity. 

Fig. 4. Calculated values of X(z,t) and Y(z,t) at center 
of AGS linac. 
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Fig. 10. Steady state phase and amplitude variations 
along the cavity length-feeds at L/4 and 
3L/4 points. 
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