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Introduction and Summary 

In the design of high-perveance electron 
beam devices, it is necessary to evaluate the 
effects of the self-fields on the beam trajectories 
a s  well a s  the effects of any external electromag- 
netic fields that may be present.  
describes a means whereby the self-consistent 
solution of Poisson's equation, the relativistic 
equations of electron motion, and the equation of 
charge continuity, all subject to  specified bound- 
a ry  conditions, are determined by means of a dig- 
i tal  computer program. In particular the method 
is applied to the case of an axially symmetric,  
solid-beam electron gun where the electrons a re  
emitted with zero initial velocity from a space- 
charge-limited cathode. 

In the first section of this paper, the equa- 
tions of motion a r e  developed using the relativis- 
tic Lagrangian and the well-known Euler-Lagrange 
equation. Cylindrical coordinates a re  employed, 
and the condition of axial symmetry is used to  
eliminate the azimuthal coordinate. 
section develops the equations describing the elec- 
tromagnetic fields. 
and the self-induced magnetic field due to the beam 
itself a r e  included. 
brief description of the computer program and its 
requirements. The final section presents results 
of the calculation a s  applied to two electron-gun 
configurations. F i r s t ,  the calculation is applied 
to a 67 .5"  Pierce gun, and the results a r e  com- 
pared with the theoretical resul ts .  Second, the 
calculation is applied to an electron-beam welding 
gun, and the resul ts  a r e  compared with the exper- 
imental resu l t s .  In general, the resul ts  show the 
manner in  which an initially parallel beam subse- 
quently diverges; they also show how an initially 
converging beam reduces to  a minimum diameter 
and thereafter diverges. 

This paper 

The second 

The effect of space charge 

The next section presents a 

1. Equations of Motion 

The Lagrangian for an electron in  an elec- 
tromagnetic field is given1 a s  

* L = -mOc241  - p 2 + eV - e x .  v 

where 

2 2 2  2 -112 P = v / c  8 Y = ( 1 - 1 3 )  , 

and in cylindrical coordinates 

(1.1) 

* Work done under auspices of the U.  S. Atomic 
Energy Commission. 

In Eq. (1.11, mo is the res t  mass  of the electron 
with charge e ,  
c is &he speed of light, V is the electric potential 
and A is the magnetic vector potential. 
denote d/dt.  Using the Lagrangian above and 
specifying the magnetic and electric potentials, 
one can determine the equations of motion via the 
well-known Euler-Langrange equation. 

For the case being considered here,  an axi- 
ally symmetric steady-state system, the electric 
and magnetic potential functions a re  independent 
of e and t .  However, the magnetic vector potential 
is allowed to have a 0-component. Moreover, 0 is 
a cyclic coordinate and the canonically conjugate 
momentum i s  conserved; hence, a f i rs t  integral 
of e( t )  can be written immediately a s  

is the velocity of the particle, 

The"dot# 

mOyr2i  - e r  A@ = constant (1.2)  

where the constant depends upon the initial condi- 
t ions.  If at  t = 0 the conditions a re  r = ro,  0 = 0 ,  
and Ae = Ao, then the result  is 

(1.3) 

where r )  = e /mo.  It should be noted that Eq. (1.3) 
is a form of the well-known Busch's theorem.2 
From Eq. (1.3) it is seen that a particle emitted 
in  a magnetic field will obtain mechanical angular 
momentum when leaving the field. Similarly, a 
particle entering a magnetic field region will 
undergo a change in angular momentum; however, 
it will be restored to i t s  initial value upon leaving 
the field. 

The Euler-Lagrange relation yields the dif- 
ferential equation for  the radial motion, 

Similarly, the Euler -Lagrange relation 
yields the differential equation for the axial 
motion, 

( 1 . 5 )  
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In addition 

K i -  
(1 - p j 3 / 2  

and 

d y Z )  d = yz + K i  
(1 - p2)3 /2  

where 
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(1 .6)  

(1.7) 

x (c2 - r2 - i2) (1.8) 

The velocity may be determined by 

The above equations describe the general, 
relativistic trajectories for an electron in a 
cylindrically symmetric electromagnetic field. It 
should be pointed out that the equations a re  highly 
nonlinear, and analytic solutions to  interesting 
problems would for all  practical purposes be 
impossible. 

2.  Electromagnetic Fields 
+ 

The magnetic field, B, may be+determined 
from the magnetic vector potential, A,  by 

-b -+ 
B '7 X A  . ( 2 . 1 )  

For  the c p e  of cylindrical symmetry, the compo- 
nents of B can be written from Eq. (2.1)  a s  

aAr aAZ 
B = - - -  e az a r  a 

(2.2a) 

(2.2b) 

(2.2c) i a  
B z = --(r r a r  Ae) . 

Identify Be as the self-induced, 8-directed 
magnetic field due to the beam itself. For a long 
tube of current,  Be may be determined from 

JBe CLe = p0 l j z ( r ) r  dr de 

where j, is the z-component of the current den- 
sity. 
may be written 

Since jz = j (k/v) ,  then the result  for Be 

( 2 . 3 )  

where j is the total current density, z is the 
z-component of the particle velocity, and v is 
total particle velocity a s  given by Eq. (1.9).  
Equation ( 2 . 3 )  may be integrated in order to  
determine the self-induced magnetic field at a 
point r within the beam. 

potential is defined via Eq. ( 2 . 2 ~ )  a s  
The 8-component of the magnetic vector 

Ag = $Ji rBZ(r )  d r .  

If Bz consists of a dc external applied field plus a 
self-induced axial field component, Ag can then be 
written 

BZ ( 0 )  
Ae = r - 2 + fir rbz(r )  dr .  (2 .4)  

In Eq. (2.4) Bz is the applied dc field and is 
assumed to be constant over the radius of the beam; 
bz( r )  is the self-induced axial magnetic field. 

be determined by 
This self-induced axial magnetic field may 

R 
bZ(r )  = yo f, j ,  d r  (2.5) 

where R is the outer radius of the beam and j, is 
the 9-component of the current density. 
tion (2 .5 )  holds in the approximation of no radial  
motion and no variation of j, with z. 
numerical procedure will be dealing with calcula- 
tions at  discrete points, the approximation will be 
valid if the distance between successive points is 
sufficiently small .  The other self-induced com- 
ponents of the magnetic field a r e  at present 
ignored in the calculation. 

tion to Poisson's equation which may be written 
for a cylindrically symmetric system a s  

The rela- 

Since the 

The electric field is determined via the solu- 

where p is the space charge density and EO is the 
permittivity of f ree  space; p may be determined 
in te rms  of the convection current density and 
velocity at  any point by 

p = j / v .  ( 2 . 7 )  
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The space charge density may be calculated from 
Eq. (2.7), and this result  can then be substituted 
in  Eq. (2 .  6) to calculate the required electric 
fields. 

Space-charge neutralization effects may be 
studied by multiplying the space charge term on 
the right of Eq. (2 .6)  by some factor, f (OLf 5 1). 
In this manner the electric fields may be deter- 
mined for neutralized beams (f = O), for partially 
neutralized beams (0 < f < l),  and for  completely 
unneutralized beams (f = 1) .  

steady-state flow problem, the total beam current 
must remain constant. 
equation holds, 

Since the problem to be considered is the 

That is, the continuity 

j 0.  (2.8) 

However, the current density, j ,  is a function of 
radius. If the beam is made up of a number of 
discrete rays  each of radial width Ar, then the 
conservation of current requirement leads to  

' 0  . 
J = r J ,  

where j is the current density at a radius r and jo 
is the initial current density a t  ro. 

emitted with zero initial velocity from a space- 
charge-limited cathode. Therefore, the emission 
current density is determined using Child's law, 

It will be assumed that the electrons a r e  

(2.10) 

where d is the perpendicular distance from the 
cathode to the field point with voltage V. 

3 .  Computer Program 

The numerical pr  cedure is an extension of 
the one given by 
tions a re  reduced to a set  of finite difference equa- 
tions. 
matrix of points covering the region of interest .  
Starting with an assumed space-charge density 
distribution p(ra z )  (an initial guess), Poisson's 
equation is solved via a relaxation technique sub- 
ject  to the specified boundary conditions. The 
magnetic field quantities a r e  determined by the 
appropriate calculation a s  given in the previous 
section. 
the case of an emitting surface.  
electromagnetic field quantities and the entrance 
conditions, one can solve the equations of motion 
for the trajectories.  New values of space charge 
density a r e  then calculated from the resultant 
t ra jector ies ,  The entire process is then repeated 
until a convergence cri terion is satisfied. Ther-  
mal  effects and direct particle-particle collisions 
a re  not considered; however, crossing of t ra jec-  
tor ies  within the beam is permitted. 

the CDC 6600 and requires approximately 45,000 

The differential equa- 

The electrode boundaries a r e  laid out on a 

The initial conditions a r e  determined for 
Knowing the 

The program is written in FORTRAN IV for 

memory locations for execution. A typical prob- 
lem requires an execution time of approximately 
10 minutes. Obviously, the execution time depends 
upon the care  used in  setting up the problem, the 
convergence criterion, the complexity of the elec- 
trode boundaries, the size of the matrix,  and the 
like. When the convergence cri terion is achieved, 
the resul ts  a r e  printed and, if  desired, plotted 
directly . 

4. Results 

The calculation described above has been 
applied to  a 67.5" Pierce gun a s  shown schemati- 
cally in Fig. 1. In addition several  representa- 
tive trajectories and equipotentials a r e  shown in 
the figure. The current density determined by 
the calculation deviates from the theoretical, uni- 
form value predicted by Child's law by approxi- 
mately 1370 a t  the edge of the cathode and by less 
than 0.770 in the central  region of the cathode. The 
trajectories a re  slightly curved in the accelerating 
region, a result due partly to the hole in the anode 
(that is, the anode is not a solid collector plate) 
and partly to  the self-induced magnetic field that 
is present.  

0 t I \  I I 1 

0 0.2 0.4 0.6 0.8 1.0 1.2 
AXIAL DISTANCE (INCHES) 

Fig. 1. Trajectories and equipotentials 
for  a 67.5' Pierce gun. 

4 A small  electron-beam welder has been 
experimentally developed at  LRL. Figures 2 and 
3 show a schematic representation of the electron 
gun for two cases .  In Fig. 2 is shown the case for 
a space-charge-limited cathode with no space 
charge neutralization present. Several represen- 
tative trajectories and equipotential contours a r e  
shown in the figure. In this case the beam cur-  
rent is computed to  be 0.28 A at  an anode voltage 
of 10 kV for  a perveance of 2.8 X 

Figure 3 presents results for the same case 
a s  in  Fig.  2 but with a fully neutralized beam 
space-charge. In this configuration the beam 
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0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2 . f  
AXIAL DISTANCE (INCHES) 

Fig. 2 .  Trajectories and equipotentials for an electron-beam welding gun. No space-charge 
neutralization is included. 

PERVEANCE = 9.5 

1 00% NEUTRAL I ZED 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 
AXIAL DISTANCE (INCHES) 

Fig. 3. Trajectories and equipotentials for an electron-beam welding gun. 
neutralization is included. 

Full space-charge 
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current is computed to be 0.95 A at 10 kV anode 
voltage for a perveance of 9.5 x 10-7. Several 
representative trajectories as  well a s  the beam 
edge trajectory a r e  shown in the figure. 

Comparing Figs. 2 and 3,  one can see that 
the space charge forces tend to prevent excessive 
trajectory crossing. In addition the beam waist 
(minimum beam diameter) is moved farther away 
from the cathode for the case of no neutralization. 
Comparing the positions of the equipotentials for 
the two cases ,  one can see that the position of a 
given equipotential is farther away from the cath- 
ode for the unneutralized case compared to the 
neutralized case.  This shift in the position of the 
equipotential is due to the negative space-charge 
potential generated by an unneutralized beam. 

well with the actual electron gun data. 
electron beam welder operates dc in a vacuum 
of the order of 10-5-10-4 mm Hg and is bombard- 
ing a target, it is reasonable to expect that some 
degree of neutralization is present. In operation 
the welder has a cathode current of approximately 

These computed results agree reasonably 
Since the 

0 .7  A at an anode voltage of 10 kV for a perveance 
of 0.7 X 10-7. 
degree of neutralization is present. 
properties such as the position of the beam waist 
also tend to verify this conclusion and in fact sug- 
gest that the beam is made up of an unneutralized 
core surrounded by a somewhat neutralized cloud. 
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