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The extension of the periodic system has been 
a fascinating f i e l d  of endeavor for many years. 
The buildup of the elements t o  atomic number 103, 
the l a s t  of the actinide rare-earth-like series,  
has considerably enlarged our knowledge of the 
chemical properties of t h i s  ser ies  and has produc- 
ed new insights concerning the nuclear structure 
of the heavy nuclides. An especially important 
finding has been the disclosure of the drama$( c 
effects cause by a subshell a t  152 neutrons.' How- 
ever, as the atomic number has been increased, the 
decrease i n  half-l ives and production cross sec- 
tions has made it  increasingly d i f f i c u l t  t o  study 
these nuclides i n  any great detai l .  The purpose 
of this paper i s  t o  give a general picture of the 
direction of these studies and t o  indicate some a? 
the requirements imposed on accelerators designed 
t o  further this research. 

l i f e  vs neutron number for the elements With even 
atomic number. Note the prominent peak at 152 
neutrons and fur ther  note that the alpha half-  
l ives increase again a f t e r  the dip a t  154 neutron5 
presumably increasing monotonically u n t i l  the next 
neutron s h e l l  i s  reached. The dotted l ine  for 
element 104 i s  located where one might logical ly  
place it on the basis of the l a t e s t  data on the 
preceding elements.2 The loyer limit indicated 
for the nuclide labeled lomu i s  already w e l l  
abom t h i s  predicted l i n e  and thus a question i s  
raised as t o  the assignment of this 0.3-s spon- 
taneous f i ss ion  emitter.3 

The heaviest isotope of element 102 know a t  
the moment, mass 257, has a ha l f - l i fe  of 20 s. 
!Chis value would lead  one t o  predict tha t  102258 
should have an alpha ha l f - l i fe  i n  the re ion of a 
minute and yet it has not been observed.' Fig. 2 
indicates the most probably reason for i t s  absenca 
Plotted is  the w r i a t i o n  of spontaneous f i ss ion  
half-l ife with neutron number for elements with 
even atomic number. 
e r i s t i c  i s  t h a t  a precipitous peak occurs a t  152 
neutrons as the atomic number is  increased. The 
sharp drop beyond this peak seem t o  predict a 
spontaneous f i s  on half- l i fe  as short as a m i l l i -  
second for 102258. Again the 0.3-s ac t iv i ty  l a -  
beled 104260 does not seem t o  f i t  i n  well with a 
simple empirical extension of the known data for 
the other heavy nuclides. 

If one ignores the data for 104260 (and there 
are other reasons f o r  questioning the assignment 
of this act ivi ty) ,  it is  tempting t o  draw the gen- 
e r a l  conclusion tha t  the rate at which the in-  
crease i n  atomic number decreases the spontaneous 
f iss ion ha l f - l i fe  is real ly  greater than observed 
and that it i s  the s tabi l iz ing e f fec t  of 152 
neutrons tha t  p a r t i a l l y  neutralizes the expected 
Z2/A effect .  It logical ly  follows from t h i s  hy- 
pothesis tha t  spontaneous f iss ion will become the 

Figure 1 shows the variation i n  alpha half- 

The most outstanding charact- 

predominant mode of decay for the higher Z e le -  
ments i n  t h i s  region. 
number of protons or  neutrons are hindered i n  
sp ntaneous f i ss ion  decay by factors  as great as 
10 one would expect t o  find such atoms among the 
elements with higher 2 but it seems probable tha t  
the decrease i n  f i ss ion  barr iers  i s  proceeding so 
rapidly tha t  the spontaneous f iss ion decay rates  
for a l l  isotopes may soon become almost instan- 
taneous. !&us production of new elements beyond 
about atomic number lo7 is not very l ike ly  if t h i s  
picture pers is ts .  

In 1964, however, Swiatecki and Myers point- 
ed out the possibi l i ty  tha t  the f iss ion barr iers  
would be raised t o  rather high levels by the on- 
s e t  of a doubly closed s h e l l  a t  126 protons and 
184 neutrons. These estimates were made by ex- 
tensions from a semi-empirical mass formula that 
was found t o  yield quite re l iable  data on nuclear 
masses and deformations of known nuclei. When 
extrapolated t o  the region of superheavy nuclei 
these calculations predicted f iss ion bar r ie rs  as 
high as those that assure the s t a b i l i t y  of the 
ordinary elements around thorium and uranium. 
Such exotic nuclei  can only be produced by in te r -  
actions between complex nuclei and it i s  known 
that  the cross sections for such reactions are 
proportional t o  the r a t i o  rn/(rn+rf), where rn 
and rf are the leve l  widths f o r  neutron emission 
and f iss ion,  respectively. Since t h i s  r a t i o  in- 
creases as the f i ss ion  bar r ie r  increases, the 
cross sections t o  produce nuclides i n  this hypo- 
the t ica l  island of s t a b i l i t y  should become very 
large and thus the possibi l i ty  of producing them 
is substantial.5 There i s  another body of opin- 
ion that  postulates the next closed proton s h e l l  
t o  be a t  114 protons. 
the case the  sane general conclusions can be dram 
regarding s t a b i l i t y  but the d i f f icu l t ies  i n  find- 
ing sui table  reactions f o r  formation of nuclides 
neas 114p and 18411 are formidable. 

Sikkeland. which i s  intended t o  represent i n  a 
very general way the mountain ranges of s t a b i l i t y  
that might be brought about by she l l  closures at 
126p and 18411. The contours marked with xponents 
indicate alpha half-l ives from 10-3 t o  10 s while 
those without exponents indicate 
from 2 t o  12  MeV. 
taneous f i ss ion  ha l f - l i fe  of years has an 
Ef of 5.8 MeV.) Of course, the alpha half-l ives 
are  very dependent on where the l ine  of beta sta- 
b i l i t y  is drawn. For an Ef = 4.0 MeV the  spon- 
taneous f i s s i o n  ha l f - l i fe  f o r  an even-even nu- 
clide w i l l  be i n  the neighborhood of seconds so 
below t h i s  contour the nuclides w i l l  disappear by 
spontaneous f iss ion disruption. Above t h i s  level 
on the s t a b i l i t y  mountain the nuclides w i l l  pm- 
bably disappear by short-lived alpha decay, but 

Since nuclides with an odd 

c 

4 

If t h i s  turns out t o  be 

Figure 3 is a 2 vs N chart prepared by T. 

5 
iss ion barr iers  

(Note that U23 with a spon- 5 
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i n  doing so they w i l l  change in to  nuclides of low- 
e r  atomic number tha t  w i l l  decay by sposltaneous fie 
sion. Thus i f  these predictions are correct we 
see tha t  t h i s  island of s t ab i l i t y  i s  surrounded on 
a l l  sides by an ocean of spontaneous f iss ion.  Such 
a picture probably rules out production of these 
superheavy elements by means of the nuclear ex- 
plosion technique. In  this method very neutron- 
heavy isotopes of a much l igh ter  element are in-  
stantaneously forroed by the successive amalgama- 
t ion  of a great many neutrons with a l igh t  target  
with subsequent beta decay t o  a higher Z. 
would seem tha t  the beta decay chains muld a l l  be 
interrupted by extremely short-lived spontaneous 
f i ss ion  emitters. 

heavy elements? In  the case of those nuclides i n  
the region of 126p and 184n the most promising re- 
actions are those i n  which the interacting nuclei 
fuse with subsequent de-excitation by neutron, pro- 
ton, or y-emission. The l eas t  excitation energy 
and thus the l ea s t  f i s s ion  competition i s  induced 
when the project i le  and target  are  of approximate- 
l y  equal mass. As an i l l u s t r a t ion  two systems 
have been l i s ted  with the i r  coulomb barr iers  Vc, 
Q values, and corresponding laboratory energy 

It 

What are the best ways of forming these super- 

thresholds Elab* 

96 160 + 88 150 i84,263io 64Gd 6zSm --3 + Y  
r 

Vc = 355 MeV 

Q = -399 MeV 

Elab = 773 MeV (5.2 MeV/N) 

V = 348 MeV 

Q = -419 MeV 

1la.b = 726 MeV (5.5 MeV/N) 

I n  these cases because of the fa-mrable Q 
values it i s  possible t o  bombard a t  a C.M. energy 
tha t  i s  more than 50 MeV above the barr ier  and so 
enhance the cross section. 

cross section, t o  produce the same nuclide by bom- 
barding thorium with krypton ions. 

It is  also feasible, though with smaller 

Thus: 

= 296 MeV 
VC 
Q = -311 MeV 

Elab 
= 424 MeV (5.0 MeV/N) 

The cross sections f o r  the above reactions 
would optimistically seem t o  f a l l  i n  the range of 
5-50 millibarns and the exci ta t ion function half- 
widths might be i n  the range of 15-60 MeV. T h i s  
would imply a max'mum usable ta rge t  t c h e s s  of 
l e s s  than 1 mg/cm B . With a beam of 10 3 ions/s 

and a cross section of 5 millibarns one could pro- 
duce 1 dis/s a t  equilibrium. Of course, i f  the 
super heavy nuclide Was very long-lived nothing 
could be observed and more sensitive methods of 
detection would have t o  be used t o  detect it. On 
the other hand i f  the s tab i l iza t ion  i s  indeed t h i s  
high then peripheral nuclides around the island 
of s t ab i l i t y  would be observed t o  aecay w i t h  mea- 
sureable half -lives. 

closed she l l s  a t  114p and 184n, 1gfi114258, cannot 
be produced by a fusion reaction followed by 
neutron or y-emission only because i t s  high neu- 
t ron t o  proton r a t io  puts it beyond any possible 
mass combinations. In this case it i s  hoped tha t  
the she l l  effects  w i l l  extend over a region wide 
enough t o  s tabi l ize  nearby nuclides. With stable 
isotopes the nearest approach would be: 

The other prominent possibil '  y f doubly- 

a nuclide with 184n 
82 136 f 9o 150 --3172114286 t o  produce or 54'" 60Nd 

a nuclide with 114p 

Nuclei i n  the neighborhood of the l lkp ,  184n 
double shells may be produced i n  fusion reactions 
followed by proton evaporation. 
evaluation of the cross sections f o r  such reac- 
t ions have been perf'ormed i n  this region of the 
periodic table. However, f o r  these neutron de- 
f i c i en t  nuclides the binding energies f o r  pro- 
tons are less  than those f o r  neutrons and hence 
proton evaporation might compete favorably with 
neutron evaporation. 

184113'Fi i t s e l f  could be formed d i r ec t ly  as a 
primary f i ss ion  product of the amalgamation of 
one uranium nucleus with another. It i s  not c lear  
that  such a super nucleation would actual ly  take 
place but it seems possible that  the doubly magic 
nucleus might be favored i n  rare cases. 

A thi rd  possible but rare reaction that 
might produce nuclides i n  t h i s  region i s  of the 
par t ic le  t ransfer  type. Thus, 

No quantitative 

e i s  the remote possibi l i ty  t ha t  

This i s  a grazing reaction i n  which, possibly, the 
(22p20n) would be ejected as a c lus te r .  
erget ics  of this reaction would indicate a bom- 
barding energy of about 6 MeV per nucleon. 

with any reasonable cer ta inty whether these pro- 
ton and neutron shel ls  w i l l  occur and whether the 
subsequent effects  of s tab i l iza t ion  w i l l  conform 
t o  the preceding outline. The only solution must 
be an experimental one. The requiremnts for an 
accelerator that  can pioneer this interest ing 
f i e l d  of research would seem t o  be the following: 

The en- 

There i s  no possible way tha t  can predict 

(1) It should accelerate atoms from 
z = 18-92, 

(2) It should have a variable energy output 

(3)  Though beam currents of 10 

from 3-7 MeV/N. with an energy spread of 
l e s s  than I$, 8 

ions/s are 
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capable of marginal experiment&it is  desirable t o  
have intensi t ies  as high as 10 ions/s. Remeniber 
however that  because of the high mass the very 
hea nuclides pose a serious thermal problem. For 
~ ~ 3 F f E c e l e r a t e d  t o  7 fiv/n an average in tens i ty  
of 10 ions/s would man about 300 m$ts dissipa- 
ted i n  a t o t a l  range of about 10 mg/cm , 

(4) A long duty cycle is  imperative for in- 
beam types of experiments on nuclides 
with nanosecond half-l ives.  

Inwing the last two years we have expended a 
considerable e f for t  to  t r y  t o  decide which type of 
accelerator was best suited t o  the above requlre- 
ments. This study has led us t o  a completely new 
accelerator concept which not only will provide 
suitable heavy ion beams f o r  law energy nuclear 
chemistry research but w i l l  also generate 
energy heavy ion beams for an important new area 
i n  biomdical research and therapy. 

Let  u s  consider the primary problem with con- 
ventional acceleration mthods when applied t o  
w r y  heavy atoms. This i s  the d i f f i c u l t y  of re- 
moving a sufficient number of' electrons from the 
atoms t o  make ef f ic ien t  acceleration possible. 
Fig. 4 indicates the relat ive abundance at each 
charge s ta te  of krypton and xenon for one of the 
most eff ic ient  ion sources available at the pre- 
sent time plotted against E, the charge t o  mass 
r a t i o .  It can be seen that  a t  the values of E 
normally necessary i n  even large cyclic accelera- 
tors ,  0.15 or more, the ion output f o r  these mod- 
erately heavy ions is very small. The s i tua t ion  
should be even worse f o r  higher Z elements. 

In  the case of the cyclotron t h i s  problem i s  
compounded by the high residual pressure near the 
ion source caused by the w l a t i v e l y  high gas flow 
necessary f o r  i ts  successful operation. 
sultant loss due t o  recombination of the ions 
being accelewtsd can become very high. 
icu l ty  can possibly be circumvented by using an 
external ion source coupled t o  an a x i a l  injector .  
Another possibi l i ty  i s  the use of a l i n e a r  accel- 
erator t o  in jec t  an ion with low E across the mag- 
netic f i e l d  with subsequent t rans i t ion  t o  high E 
by mans of a stripper f o i l  near the cent ra l  region. 
Both of these methods have t h e i r  own losses  and 
problems and it i s  by no means cer ta in  that great 
improvements w i l l  result by t h e i r  use. 

when one examines the use of the l i n e a r  accelerator 
t o  reach 7 MeV/N. With presently a t ta inable  RE' 
gradients it i s  not feasible t o  use a single value 
f o r  of the ion being accelerated since the mach- 
ine becomes inordinately long. The usua l techni -  
que is t o  start with a low value (0.13 i n  the case 
of the Berkeley HILAC) and accelerate the  ion t o  a 
velocity high enough so that an extremely th in  
stripper f o i l  can raise E t o  a value such t h a t  the 
subsequent length of l inear  accelerator can be of 
economic length. The HILAC post-stripper tank can 
now accelerate ions with E = 0.25 but only a t  about 
5$ duty cycle. mere i s  an additional loss i n  the 
stripping process because of the mult ipl ic i ty  of 
charge s ta tes  produced and because of scat ter ing by 
the f o i l .  These losses can be as much as a fac tor  

The re- 

This d i f f -  

The E problem poses economic d i f f i c u l t i e s  

2 of 10 f o r  heavy ions such as krypton. A t  the 
present time we are planning t o  make a major im- 
provement i n  the 4 3 U C  that w i l l  allow it t o  ac- 
celerate up t o  10 K r  ions/s average, a thousand 
t iEs  i t s  present capability. This wlll be done 
by the substi tution of a longer pre-stripper tank 
equipped with magnetic quadrupole focusing within 
each d r i f t  tube. The design E w i l l  be 0.1 or 
lower and consequently a higher voltage injector  
is also required. The tentative completion date 
f o r  th i s  major change is  July 1968. 

use of one or more Van de G r a a f  accelerators that 
may be successful i n  cer ta in  respects for the ac- 
celeration of very heavy ions t o  useful energies. 
The methods usually involve the use of negative 
ions from the source with a subsequent t ransi t ion 
t o  a higher positive value of E accomplished by 
passage of the ions through a gaseous medium i n  
the very high positive terminal of a Van  de G r a a f  
accelerator (15-20 megavolts) . 
ation and increase i n  E is  produced by passage of 
these ions t o  ground potential  through several 
successive f o i l  str ippers.  S t i l l  higher energies 
may be achieved by accelerating this beam up t o  
a negative high voltage terminal but then a l l  bom- 
bardnaents must be perPorued at t h i s  high potential .  
O u r  study of such accelerators with t h e i r  many 
variants has led us t o  the conclusion that they 
have marginal u t i l i t y  for our purposes when com- 
pared with the other methods available t o  us. 

author conceived the gew accelerator system which 
we c a l l  the Omnitron. The E problem which 
plagues other accelerators i s  essent ia l ly  bypassed 
i n  this machine since it w i l l  accept ions with 
charge-to-mass r a t i o  as low as 0.05 and s t i l l  ac- 
celerate them t o  energies as high as 6.5 MeV/N 
without fur ther  stripping. The Omnitron, as pres- 
ent ly  proposed , consists of two concentric a l te r -  
nating-gradient rings, a rapid-cycling (60 Hz) 
synchrotron and a dc storage ring, both approxi- 
mately 120 f t  i n  diameter (see Fig. 5). 

t h i s  system. In  the first mode positive ions with 
e as low as 0.05 are injected f r o m  a 3 MV dc ac- 
celerator in to  the synchrotron and accelerated t o  
the desired energy, then transferred t o  the s tor -  
age ring from which they are extracted f o r  exper- 
iments. The function of the storage ring i n  t h i s  
case i s  t o  permit long beam s p i l l s  without slowing 
down the acceleration process i n  the synchrotron. 

In the second mode of operation, the storage 
ring i s  used as part  of a double acceleration 
cycle t o  produce high-energy heavy ions for bio- 
medical research. As shown i n  Fig. 6 the cycle 
begins by the acceleration of beam at  a low value 
of e t o  the full Bp of the synchrotron with i t s  
subsequent txansfer t o  the storage ring. The ions 
are held i n  t h i s  ring f o r  8 ms while the synchro- 
tron guide f i e l d  decreases t o  a value appropriate 
for reinjection of the ions with a l l  or most elec- 
trons remoed. As the ions are being transferred 
back to  the synchrotron, they are stripped t o  the 
higher charge s t a t e  by passage through a th in  
f o i l .  They are then reaccelerated i n  the synchro- 

Techniques have been devised involving the 

Further acceler- 

In  1964 Robert M. Main, Bob H. Smith, and the 

There are two possible modes of operation of 
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t r o n  t o  energies as high as 500 MeV/N. The ion 
energy output i s  continuously variable and very 
w e l l  defined i n  both modes of operation. 

so tha t  a great armunt of f l e x i b i l i t y  i n  operation 
w i l l  be permissible. Most phases of biomedical 
research do not demand high average beam levels,  
so tha t  it should be possible t o  sequentially de- 
l i v e r  low-energy beam of one par t ic le  t o  nuclear 
chemists and high-energy beam of a different par- 
t i c l e  t o  biomedical researchers t o  permit simul- 
taneous use of the accelerator. Figure 7 i s  a 
plan view of the system. The low-energy beam 
gal lery is  on the l e f t  and the high-energy caves 
are on the right.  The AGS rings a re  i n  the center 
and the anci l lary equipmnt is  d i rec t ly  above. 
Fig. 8 i s  a possible design f o r  the complete 
building . 
ef f ic ien t  device i n  that beam once accepted at 
injection is  husbanded carefully a l l  the way 
through the acceleration and extraction processes 
t o  the target,  it does suffer  from an inherent 
l imitation i n  i t s  maximum duty factor .  Thus with 
an injection potential  of 2.5 MV necessary at an 
E of 0.05 t o  achieve 6.5 &V/N i n  a single accel- 
erat ion cycle, the  single turn inject ion ti is 
28 ps and the duty factor  would be 1.6 x lo3 f o r  
a 60 Hz cycling rate.  The other basic l imitation 
i s  tha t  encountered i n  the ear ly  par t  of the ac- 
celeration cycle i n  the form of a space charge 
l imi t  which cannot be exceeded without seriously 
perturbing the betatron oscil lations.  
sideration of the aperture t h a t  has been proposed 
and previous experience with Y3king AGS systems 
t h i s  l i m i t  i s  approximately 10 
where q i s  the charge s ta te  being used. If the 
beam available from the ion source exceeds this 
l imi t  (1 mA) then the duty fac tor  will limit the 
synchrotron output. In the case of the ultra- 
heavy ions, par t icular ly  those with many stable 
isotopes, the ion source i s  l i k e l y  t o  be the l i m -  
i t i n g  factor .  However, by increasing the injec- 
t i o n  t i m e  t h i s  problem can be circumvented up t o  
a factor  of 30. This can be accomplished by low- 
ering the injection potential  and by injecting 
beam f o r  as many as 10 turns. 
saturation of the Omitron ring can be obtained 
with as l i t t l e  as 40 pA from the ion source. 
low duty factor  required of the ion source even 

We are planning t o  build two 3 mV injectors 

Although a synchrotron is  basically a very 

From a con- 

/q per second 

By this technique 

The 

under t k s e  conditions (5s m a x i m )  w i l l  allow 
i t s  operation a t  the high arc  currents and wlt- 
ages necessary t o  produce the gh-charge states 

w i l l  require a +11 charge). 

These general considerations can best  be 
summarized i n  the following tables prepared by 
Robert Main which compare the perfomnces of 
three types of accelerators: 
linac-injected cyclotron, (2) a hypothetical 
"super HILAC", and (3) the Omnitmn. No compari- 
son is  readi ly  applicable f o r  the dc accelerators 
because of the large number of uncertainties i n  
t h e i r  pe r f o m n c e  

i n  the ultraheavy elements ($3 h8 , f o r  example, 

(1) a hypothetical 
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Table I. Heavy-ion accelerator parameters. 

Linac-Cyclotron 

Injector Megavolts 2.0 
f 0.06 
E (MeV/N) 0.120 

Super Hilac 

2 .o 
0.06 
0.120 

Omnitron 

2 - 5  
0.05 
0.125 

Pres tripper 90 f t  l inac 60 f t  linac ----- 
0.17 0.15 
1-75 1.20 ----- 

Power, RF (MW) 2.7 1.8 
Electr ic  gradient (MV/ft) 0.5 0.5 

Number of dees (or d r i f t  tubes) 2 138 
Spiral  angle (deg) 0 --- 

B (kG) 16 --- ----- 
R~~ ( in )  57.5 --- 

----- 
----- Number of d r i  228 176 

E m  (MeV/N) 
Stripped ( 3SBYS 
iw ?Mc/s) 100 100 

Pos ts t r ippe r 125 inch cyclotron 112 f t  linac ----- 
----- 

Acc. Voltage (kV o r  
W/ft ) 75 kV 0.5 m / f t  

fMc/s ) 4.0-9.0 100 1-7-33 
Power, RF (MW) 0.35 3.4 0.045 

Estimated accelerator cost, 
1966 ($ million) 11.5 11.0 13.5 

Table 11. Accelerator performance 

S u p e r C  Omnitron Linac-Cyclotron 
Duty Factor, beam ($) 100 30-100 100 

Ion-Source Duty Factor (3) 100 30-100 5 =  
Microscopic Duty Factor ($) 20 20 100 

Energy Resolution 0.003 0.007 0.0007 
Emittance (rad-cm) 10-3 10-3 8 x 
Variability of Biergy Limited range 

Pulsed Beam 

a Flex ib i l i ty  

With source, beam 
in tens i ty  propor- 
t iona l  t o  width 

Single energy and 
par t ic le  

System Beam Losses 
Prestripper acceptance 3 
Stripping 10 
Poststripper acc ptance 7 

Charge exchange 1.6 
Extraction 2 

Duty fac tor  (uz38) 1 

Net Loss Factor 670 

Incremental steps, Continuously 
1-6.5 &V/N variable 

With source, bean 
intensi ty  proportional 
t o  width 
Single energy and 
par t ic le  

3 
10 
1 
3 
1 
1 
90 

5 ps t o  dc 
ful l  intensi ty  

Complete vari- 
at ion from 
pulse t o  pulse 
pogsible 

1.1 -- -- 
60b 
1.1 
1.05 

72 

?Fast t ransfer  o r  simultaneous delivery of beam t o  a number of different  experimental areas. 

bFor a l l  ions f o r  which the ion-source output i s  l e s s  than 0.1 mA. 
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10011 s 

140 150 152 155 
Neutron Number 

Fig. 1. Alpha half-life vs neutron number for the even 
Z heavy elements. 

178 18 182 184 186 188 190 192 194 
N v  

Neutron Number \ 

Fig. 2. Spontaneous fission half-life vs neutron num- 
ber for the even Z elements. 

Fig. 3. Hypothetical stability chart for the superheavy 
elements assuming doubly-closed shells at 
126p and 184n. The atomic number Z is the 
ordinate and the neutron number N is the 
abscissa. The light contours labeled by fig- 
ures with exponents are for alpha half-lives 
in seconds. The heavy contours labeled by 
figures without exponents are for fission 
barriers in MeV. The boundary line marked 
H.I., 7 outlines the heaviest nuclides that can 
be formed by the fusion of stable isotopes with 
deexcitation only by 7-ray emission. 
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