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BEAM DYNAMICAL CALCUIATIONS WITH REALISTIC FIEXJX IN A 
DRIFT TUBE LINEAR ACCELERATOR* 

Marvin Rich 
University of California, Los Alsmos Scientific Laboratory 

Los Alamos, New Mexico 

A method for numerical beam dynamics studies 
of drift tube type linear accelerators using elec- 
tromagnetic fields similar to those encountered in 
actual machines is presented. Results of calcula- 
tions for a 90 mev accelerator are given and com- 
parisons made with similar calculations in which 
the axial electric field is assumed spatially COn- 
stsnt within the accelerating gap. 

I. Introduction 

Although linear accelerators have been de- 
signed successfully using simplified approxima- 
tions to the accelerating fields and to the solu- 
tions for the particle motion, there is still 
interest in determining what differences may occur 
when relatively close approximations are made to 
the electromagnetic fields and to the motion of 
the particles. In this paper we would like to 
describe a numerical procedure for beam dynamics 
calculations of drift tube type linear accelera- 
tors in which the axial electric field is spatial- 
ly parabolic within the gap and zero within the 
drift tubes. This is an extension of some previ- 
ously reported work1 in which the axial field with- 

in the gap was assumed spatially constant. The 
procedure consists of two parts: (a) the calcu- 
lation of the off axis electromagnetic fields 
within the gap as a power series in the radial 
coordinate, r, using Maxwell's equations and the 
assumed axial electric field, and (b), the con- 
struction of an approximate solution to the motion 
of a charge particle within these fields. The 
method stands in contrast with the more usual ap- 
proach to numerical beam dynamics in which only tk 
principle harmonic of the accelerating field is 
used, and its effect upon a particle approximated 
by an impulse applied at the center of a gap. 

In Section II, the equations for the electro- 
magnetic fields which have been used within an 
accelerating gap and the approximate solution to 
the particle motion are presented. Some results 
of an application of these equations to the study 
of a 90 mev linear accelerator are given in 
Section III. These calculations have been made 
both with uniform axial fields and with parabolic 
fields programmed to simulate the variation in 
field shape with increasing energy in order to as- 
certain what, if any, differences result. 

II. The Computational Method 

The Electromagnetic Field 

The calculation of the accelerating fields 
which have been used in the computations to be pre- 

sented is based on the assumption that the longi- 
tudinal electric field has the following form on 
the accelerator axis: 

Es(r=O,z) = EOg(z+$ e($z)f(z) g.~z~g (I) 

where 

f(z) = 

Here L is the distance between drift tube centers 
and g is the length of the accelerating gap as 
shown in Fig. 1. R is one minus the ratio of 
field strength at the gap edge to that at the gap 
center. The step function 0(x) is unity for posi- 
tive x and zero for negative x. This field con- 
figuration may be considered periodic with period 
L. 

The off axis fields can be obtained easily by 
writing the solution of Maxwell's equations for a 
harmonically varying periodic configuration with 
cylindrical symmetry in terms of Fourier-Bessel 
series: 

Ez(r,z,t) = EC $ an 
n=O 

cos F Io(bn') co6 cot 

an 2m Er(r,z,t) = -E. 2 -L sin F 
n=O bn 

Il(bnr) cos rut 

Bg(r,z,t) = w E 2 
2. 

- 2 O n=O bn 
2 cos F Il(bnr) sin cut 

where (u is tine angular frequency of the oscilla- 
ting field and 

bn =,(iir -(E) 

Expanding the Bessel functions in powers of r ar+d 
resumming the series with the aid of the relation 

2nnz fJ(,+$ e(;-z) f(z) = 2 an cos -y- 
n=O 

gives, through third order in r, 

Es = E. e(z+~)e($z)f(z) r2 + F s(z)} CO6 cut 

;[b(Z+;)f(Z) - 6(Z-5) f(s)] 

(continued) 
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+ ; e(z+p(p p + 

r3 as(z) cos CLd; 

- 

Ii5 dz 
1 

B6 = - E. + {; e( Z+$e($Z)f(Z) 
C 

+ $ s(z) sin cut 
> 

with 

CD2 ( 1 a2 s(z) = - 7 + 2 Ce(z+p+)f(z)l 
c a2 

Approximate Solution to the Equations of Motion 

The Cartesian equations of motion for a par- 
ticle moving in a cylindricaly symmetric electro- 
magnetic field are 

gqEr -;Be] 2 i = 1,2 

(5) 

y=e 
at ii EZ + [ 

YXl + u2x2 
7r Be 1 

% -= 
at y/r i = 1.,2,3 (6) 

where indices 1, 2, ana J correspond t 

2: f :i~;c37;2j3+ 
ectively, r = (xl 4hZ2jiY2 8 

2 ' 

Because of the appearance of 8-function and 
their derivatives in the fields at the gap extrem- 
ities, z = f g/2, a particle will receive both a 
radial and a longitudinal impulse upon entering or 
leaving a gap. These s-function contributions 
simulate the effects of the rapid rise of the off- 
axis electromagnetic fields necessitated by the 
sudden reduction of the fields on entering a drift 
tube. Neglecting small terms, t'ne impulse re- 
ceived by a particle entering a gap is approxi- 
mat ely 

U) a2f(z) sin rut + T ,zs cos cut 
)I 

(7) 

i = 1,2 

cos wt + f(z) 5iX sin ti 
“3 > 

where the coordinates, time, and u-components are 
those at the arrival of the particle at the gap. 
Similar impulses, with opposite overall signs, 
occur on leaving the gap. 

Within the gap, the fields to be used in Eqs. 

(5) and (6) are 

A relatively simple and accurate approximation to 
the particle motion within the gap can be obtained 
by inserting linearly time dependent forms for the 
position coordinates occurring in the above field: 

(0) 
Xi = xy + +- t i = 1,2 

x3 = 
- f+ vt 

where the zeros refer to the particle parameters 
immediately after entering the gap ana the veloc- 
ity 7 is the gap length, g, divided by the time 
required for the particle to cross the gap. Again 
omitting small terms and assuming that the parti- 
cle enters the gap at time t = 0, the equations of 
motion can now be integrated to give 

ui(t) = u(o) i + ;>gl$ (1- $$)[xp) 
x 

( 

sin $ + sin JI, 
+ 

cos $ - cos q, 

2 at > 

u!O) 1 + - alt 
( 

3cos JI + cos JI 

UY 0 
-2-sin+ + 0 

2 

+ 
2(sin $ - sin Jr,) 1P (0) (8) cut )I -PFxi 

(cos $ - cos 6,) at I 
i = 1,2 

Lip = 2y + ; --&- e E" (l- $#.- R(l- --$)I 

cos jl + cos Ji 
X(sin'j - ~in$~) -4R at O (9) 

I 

(continued) 
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x Cot(COS JI + COS JI,) - 2(sin $ - sin Jro)] 
I 

(11) 

magnetic field when the particle centers the gap 
and $ = cllt + qo. 

A Beam Dynamics Code 

Although Eqs. (8) through (11) appear consid- 
erably more formidable than equations more conunon- 
ly employed in numerical beam dynamics studies, 
their use does not result in excessive increases 
in computation time compared to simpler, less 
accurate procedures. The beam dynamics code which 
has been written using these equations consists of 
two parts. In the first, the accelerator geometry 
is computed given the stable phase, the energy 
gain per unit length, and the g/L and field shape 
sequences for each tank. From the stable phase, 
JI stable' and the g/L ratio, the phases of the 

electramagnetic field at which the axial desi n 
fh particle is required to enter and leave the n 

gap are specified to be 

Sin(“) = estable - fl(dL), 

*,,(n) = fstable + ddL)n 
(12) 

The length of the nth gap can then be calculated 
from Eq. (ll) using the requirement that, with 
(0) = 

x1,2 0, x3(t) = g,/2 when cut = Sout(n) - Jlin(n): 

g = 4*) 
n &-$~p+-~) 

x (COS $, - co8 Sin) + (l- Rknt sin Olin 

I 
(13) 

+ 4ticos ein + $ sin f,, + 2sin $,,)I 

If u is the longitudinal %omentumtl of the design 
part?cle at the end of the ntn gap as obtained 
from Eq. (9) 

un = u.p)+ 2 
m21f-R(l- &)](sin 'Out ( 4] 

1 

- sin Sin) - 4R 
co.3 $out + cos tin 

rot 
I 

9 

then the length of the nth drift tube will be 

ln = 
( 

qin(n+l)-$ out(n) + 2$l+ u~q"un/u (15) 

The field strength, Eo, to be used with the nth 
gap equations is determined from the energy gain 
per unit length, C, by 

E&O,& dz 

= E(g/L),l Eout(d - tin(n)] (continued) In these equations $0 is the phase of the electro- 
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- 4R 
cos$out+codin -IL 

art 
I 

where again cut = $,ut(n) - t,,(n)* 

Following the specification of the accelera- 
tor geometry, assignment is made of a quadrupole 
magnet configuration and of possible sets of ran- 
dom quadrupole and gap field errors and misalign- 
ment errors. 

In the second part of the code, particles 
with various initial phase, energy, and off-axis 
position and velocity are carried through the 
structure using Eqs. (8) through (11). The time 
required to cross a gap is found first by solving 
Eq. (11) for UTt with x,(t) = g/2: 

! Q$= g+iT 
\ 

;rc (? gJ[(- $5) 

x l[l-If--$)](cod -cosJ'O) +4R 

x ccos to+~( I 2rf$ 
sin 9 + 2sin $013 + - 

g2 

x (CO6 $ - cos $o) + 
p,p)+ ~O)x~O) bR 

wO 
-F 
g 1 

X [cut(cos $ + cos JI,) - 2(sin Ji - sin $,I 
I 

Solution of this equation is obtained by iterat .on 
starting with an initial guess of otO = Jio,(n) 

qin(n). For an accuracy of one part in 105, two 

iterations are generally required with a third 
iteration being necessary in a few percent of the 
gaps - Substitution of the time found by Eq. (17) 
into Eqs. (a), (9) and (10) yields the final radi- 
al position and the velocity preceding the final 
impulse. Transit through quadrupole magnets with- 
in the drift tubes is accomplished by the usual 
linear approximation.a 

III. Some Comparative Design Studies 
for a 90 Mev Accelerator 

The computing method described above has been 
used in an attempt to determine what differences 
in the computed phase and radial motion will occur 

for an accelerator of given design specifications 
when parabolic axial field shapes are prescribed 
in contrast to constant fields. In addition, as a 
test of accuracy, a comparison was made of the 
phase motion with parabolic fields between results 
using Eqs. (9) and (11) and a direct integration 
of the equations of motion to carry particles 
through the same accelerator configuration. For 
both problems, an errorless 90 Mev accelerator of 
interest in the L.A.S.L. design program was con- 
sidered, specifications for which were 

Tank 1 
Final Energy (Mev) 8 5: 9; 
Energy gain/meter (Mev/m) 1.11 1.75 1.32 
g/L range 0.20 0.18 0.33 

to to to 
0.28 0.30 0.40 

Drift space (m) 0.30 0.9144 

Tne injection energy was 0.75 Mev and the opera- 
ting frequencies and "stable phasesW were chosen 
to be 201.25 MC and -260, respectively, for all 
three tanks. Quadrupole magnets were assumed to 
occupy 55% of the length of each drift tube with a 
sequence of + - + - in the first tank and 0 + 0 - 
thereafter. The initial quadrupole strength was 
taken to be 6100 gauss/cm and was progrannned to 
decrease as l/S. Finally, for parabolic fields, 
the shape parameter R was chosen to be the follow- 
ing function of design particle energy as deter- 
mined from a fit to calculated gap fields3 at 10, 
50, and 100 Mev: 

R = 0.19667 - 0.0203 E + 6.333 . 10 -5 E2 

In the comparison with the numerical integra- 
tion of the equations of motion, phase and energy 
oscillation amplitudes with respect to the design 
particle were found to be in agreement within a 
few tenths of one percent, except at the limiting 
edges of the acceptance region where some differ- 
ences of the order of one percent occurred. 

The comparison of calculations with the para- 
bolic and the constant gap fields did not reveal 
any appreciable differences. The geometries of 
the accelerators designed with the two field forms 
were identical everywhere to five significant fig- 
ures, and were determined solely by the prescribed 
energy gain per meter, g/L sequence, and stable 
phase. As a consequence of this, the phase-energy 
acceptance fishes differed almost imperceptibly 
for the two cases. Figure 2 shows the phase- 
energy acceptance region, applicable to both field 
types, and also three curves giving the emittance 
in terms of phase and energy oscillation coordi- 
nates for fixed initial energy and varying initial 
phase. Some of the initial phases are indicated 
on the 0.75 Mev emittance curve. The range of 
initial phases and energies was chosen to enclose 
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that portion of the acceptance fish appropriate to 
a typical buncher. The maximum amplitudes of the 
phase and energy oscillations of this group of 
particles are seen to be about 6O and 0.5 Mev, 
respectively. 

Differences in the radial motion between the 
parabolic and uniform field calculations was also 
small. The structure of the radial oscillations 
was essentially the same for both cases, with 
radial displacements differing by at most 5%. 
Although t'ne radial impulses received by a parti- 
cle at the extremities of a gap in the parabolic 
field computations generally differed greatly from 
those in the constant field case, the radial force 
within the gap was such as to cause the net motion 
to remain similar to that with uniform gap fields. 
The extent of these differences can be seen in 
Figure 3 where the radial acceptance for a parti- 
cle with the design energy and phase is shown. 
The solid lines refer to the acceptances with 

parabolic axial fields. The circles and x's in- 
dicate the acceptance region for calculations with 
constant axial fields. The cut-off at a radius of 
one centimeter is due to an assumed one centimeter 
radius hole in drift tubes in the first tank. 
Calculated acceptances were about 31% mrad.-cm in 
both the x-z and y-z planes. 

*work done under the auspices of the U.S. Atomic 
Energy Coxsnission. 
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Fig. 1 _. Schematic diagram of a drift tube section. 
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Fig. 2. Calcti;ated phase-energy acceptance and 
emittance of a 90 Mev linear accelerator, using 
parabolically shaped gap fields. Energies are in 
PIev and phases in degrees. 
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Fig. 3. Radial acceptant.? for particles 
of initial energy of 0.75 Mev and initial 
phase qi,,(l) - -620. Angles are In 
n&3.11-radians and radii 3.n centimeters. 
Solid lines refer to conputatlons h-Lth 
parahnlic axial gap fields. Circles and 
x's refer to computations ui.th ccolstant 
axial fields. 


