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IN PROTON LINACS AT HIGH ENERGIES* 
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Upton, L.I., N.Y. 

1. Introduction 

The periodically-loaded waveguide structure 
being considered for proton linacs is of the stand- 
ing-wave type in contrast to the traveling-wave 
type used for electron linacs. One reason for this 
choice is to enable one to control the accelerating 
.field in the presence of beam loading. However, 
this control is not straightforward and, in partic- 
ular, the effect of beam loading is not as simple 
as one guesses from the behavior of a single cavi- 
ty. For example, for the n-mode structure which 
is often chosen because of its optimum shunt imped- 
ance, there is a large phase shift and field varia- 
tion due to wall losses and beam loading. In this 
paper the effects of beam loading in a cavity with 
multiple cells is studied by the methods of normal- 
mode analysis used by the author1 in an earlier 
study in which the details of cell structure were 
neglected. 

We start from the cavity field equations of 
Slater* in which the actual field is analyzed in 
normal modes. The equation for the nth normal- 
mode component of electric field, 2, is 

dt -E'? dv+w2 
2 .n s n s 

i%zn dv = 
V 

1 d ?zz dv-% 
- -i dt 

-j . n j- (2 xTi,>.; ds (1.1) 
6. 

where 2" and *& are the normal electric and mag- 
netic fields of frequency, u+,, which exist in an 
ideal cavity with a closed, perfectly conducting 
boundary. The surface integral in (1.1) is per- 
formed over the non-ideal surfaces divided into 
two parts, one part being the coupling holes and 
the other the lossy metallic walls. If one applies 
(1.1) to each cell of a cavity composed of equiv- 
alent cells, one gets the dispersion relation for 
the accelerating guide. For a lossless guide with- 
out beam loading, the field coefficient, 

r-- 
J E.E, dv , 

satisfies the equation of an oscillator having the 
proper frequency lun and being driven by the surface 
integral at the coupling holes. Using Floquet's 
theorem for this driving force, the dispersion re- 
lation is given as3a4 

2 2 
(w -ul) = B (1 - cos kLo) , (1.2) 

0 

where wo is the proper frequency of the zero mode 
which is assumed to be the dominant mode in each 

* Work done under the auspices of the U.S. AEC. 
t On leave from University of Tokyo. 

cell, k the real propagation constant, Lo the cell 
length, and B the coupling coefficient which equals 
the product of bandwidth and average frequency of 
the passband. 

2. Effect of Wall Losses 

Wall losses of the cavity are taken into ac- 
count by writing the surface integral as 

$' s wall 
(2 x").; ds = 

ld 

w (l + j) s iG s 
3." dv , (2.1) 

which is similar to the standard evaluation of Q, 
from wall losses. Inserting (2.1) into (l.l), we 
have the equation of a damped oscillator. The dis- 
persion relation becomes 

2 2 
UI -w (2.2) 

0 
(I+$) + jw2 $- = B (l- cos k' Lo) , 

0 0 

where the coupling coefficient is assumed to be un- 
affected by wall losses. The propagation constant 
k' is now complex. 

Now consider a cavity consisting of N-l uni- 
form cells and two end cells of half length extend- 
ing along the z axis. The axial field of the nth 
normal mode of the cavity will be written as 

En(m) = E no cos kn(N-m) Lo , 

kL =O, 
lS0 

n/N ,..., n/N-l , and TI (2.3) 

in the mth cell in which the field is assumed to be 
constant, or essentially the zero mode (m = 0,1,2, 
. . . referring to the input end).j In an actual 
cavity, if the power is fed into the cavity from 
the input end at z = 0 and terminated at the com- 
pletely reflecting end at z = L = EL,, the axial 
field will be expressed as 

E(m) = Ee e 
jcunt cos kn(N-m) Lo (2.4) 

Neglecting the coupling Q between the cavity and I 
external circuits, the resonance condition gives 

Re (cos kd Lo) = cos k L (2.5a) 
n 0 

uJt2 
Im (cos k,: Lo) = - $- e - An (2.5b) 

0 

and 
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I 1 10 eu1 
n 

n(1-2Q,) * 

Thus for the n mode, 

cos k; L = - (1 + jG,) . 
0 

(2.6) 

If terms of @* above the second order are neglect- 
ed, the field in the mth cell is given as 

En(m) = (-1) 
N-m L (N;m)4 *2 

n 

+ j (N-m)2 An ] Ee ejwdt (2.7) 

The phase shift and amplitude change, referring to 
the last cell (m = N) are 

vrn 
x tan -' (N-m)2 Gn (2.8) 

and 

IE Cm>) 
'IT m 4 1 + $ (N-IJI)~ Ai 

IEn 1 
(2.9) 

These equations are in accord with the result 
an equivalent circuit by Nagle and Knapp6 when 

by 

N20n << 1, whereas the present result will be ap- 
plicable even when N2An 4 1 if An <c 1. For a 
typical n-mode cavity with 30 cells, Qo = 2 x lo4 
and a bandwidth of 8%, (2.8) and (2.9) give a total 
phase shift of 35O 
As shown formerly,l 

and an amplitude change of 12%. 
the amplitude change can be 

removed by the tuning of each cell to each differ- 
ent frequency, but a phase shift of the same order 
will still remain. Since these two effects are 
also produced by tuning errors and beam loading, 
the n-mode structure is not a good choice for pro- 
ton Linacs unless it has a very broad bandwidth. 

If we take the n/2 mode instead of the n mode, 
in a structure with even N 

cask' L =-jA n/2 0 n/2 (2.10) 

Fields in the even-numbered cells are nearly 
& E, exp (jwit) and 

E y2(m) = (-L)N-m'2 [L++ At,, ] Ee .jcuAt 

(2.11) 

In odd cells the fields are almost zero, and given 
by 

E$2(d = C-1) N-mt1'2 j(N-m) An/2 Ee e jwAt (2.12) 

There is no phase shift from cell to cell up to the 
second order, and only an amplitude variation re- 
mains. The field variation between the first cell 
and the Last cell is given by 

l”n,2(0) I 2 2 

IEn,2 (N) I 
=1++ 

n/2 
(2.13) 

For a structure with the same B and Length as for 
the 30-cell n-mode case cited above, even taking 
into account the doubling of N and the reduction 
in bandwidth and Q value, the maximum nonflatness 
will be less than 1% for the n/2 mode as compared 
with 12% for the n mode. In terms of transmission 
line theory, this is, of course, due to the finite 
group velocity and, accordingly, the small attenua- 
tion constant (cy = LO/V~Q~) of this mode. 

3. Effect of Beam Loading 

The effect of beam Loading is also included in 
(1.1) by the beam coupling integral, 

s 3.zn dv . 
V 

Using the normal-mode representation of (2.3) and 
the periodicity of the fields we can calculate the 
coupling integral as 

co 

%‘E1, dv = EnoIoL 1 Ts CDS wbst , (3.1) 
$=-cc 

where a tightly bunched beam passing along the axis 
is assumed, the mean current and the bunch separa- 
tion of which are I, and 2nv/kn (v = an integer), 
respectively. Wbs and T, in (3.1) are 

Olbs 
= 

0 ' 
0 

sin 
(knLo + 2~) 

Ts = 
2 > 

(3.3) 

! 

knLo + 2ns 

2 i 

The velocity of particles, vo, is taken to be con- 
stant along the cavity. 

Inserting (3.1) and (2.1) into (L.L), we find 
an equation describing a forced oscillation induced 
by the beam. In general, such a forced oscillation 
can be maintained at the steady state only when the 
proper oscillation of the cavity is in resonance 
with the external force. This synchronized condi- 
tion is expressed as UJ~ = Who = knvo and leads to 
the field coefficient 

s, zb.zn dv = - 
EnoIoL T T Q 0 n 0 

2 EU1' 
&it , (3.4) 

n 

where 7n is 2 for the zero or r mode and 1 for 
other modes. Using a relation between the effec- 
tive shunt impedance and the unloaded Q value of L,5 

r 
.-5= 

EioL TE 7n 

QO 
2sLC' ' 

n 
(3.5) 

the axial field induced by the beam is given as 

Eb(,,,) = _ Eb .jEAt cos k(K-m) Lo , (3.6s) 

Eb = reIo/To (3.6h) 
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which is out-of-phase with that of the beam bunch. 

Then the total field in the mth cell of a 
rr-mode cavity is given by the addition of (3.6) to 
(2.6) giving 

Et@ = (-l)N-m [(I + j(N-d A,) Ee 

_ Eb ej'PbN 1 .jwit , 

where TbN is the phase angle of the bunch in the 
last cell and the term proportional to A: is neg- 
lected. The vector diagram of the field composi- 
tion is shown in Fig. 1, and the phase angle bet- 
ween the beam and the field is given by 

(Pbm = - vbN + tan 
-1 (N-d2 AnEe - Eb sin vbN 

Ee - Eb 'OS 'PbN 
(3.8) 

If we introduce the beam Q value, Qb, and phase 
constant, crb, as 

11 Eb ~0s vbN 
-=- 

Qb '0 'e -Ebcos'~b~ ' 

ob = tan qbN 

(3.8) becomes 

(3.9a) 

(3.9b) 

c obQo 
‘bm = - IPbN + tan -' (N-m)' A; - 71 (3.10) 

b 

C< is given by (2.5b), with l/Q, replaced by 
l/Qt = l/Q0 + l/Qb. Comparing with (2.8) we find 
two effects due to the beam; one is the addition- 
al loss by beam loading which results in an ampli- 
fication of An, and the other is due to the reac- 
tive component of the beam loading. The latter is 
proportional to cub and independent of m,, so that 
it will be eliminated by a shift, Ac~i, of the oper- 
ating frequency, 

As we can see from Fig. 1, the best choice of the 
particle phase in a n-mode cavity will be 

(PbN % @b 53 0 (rpbN < 0 for phase stability), and 
this term should be negligible. However, the ef- 
fect of beam loading on An still remains after the 
tuning and the cell-by-cell phase shifts will be 
appreciably affected by the beam, if Qb is of the 
same order as Q, which occurs for I, - 0.1 A, 

re - 20 m/m and E, - 5 MeV/m. Similarly, an ap- 
preciable change of the field flatness in a T-mode 
cavity is expected from beam loading. 

For a n/2-mode cavity, the total field is 
given by the combination of (3.6) with (2.11) and 
(2.12). In this case the phase shift in even- 
numbered cells only due to the reactive component 
will exist in addition to the decrease of field 

amplitude by loading. Such effects are almost in- 
dependent of cell number and can be eliminated by 
two adjustments: a small change of the operating 
frequency, estimated from (3.11) to be of the or- 
der of 10 kc, and an increase of the input power. 

In the above considerations the coupling ef- 
fect between the beam and field which causes the 
beam blowup instability in high-current electron 
accelerators was neglected. The analyses of such 
phenomena have been given in various reports7 and 
will be somewhat improved by using equation (1.1) 
as a circuit equation for each cell. For example, 
in a n-mode cavity we find four component waves, 
i.e. the increased, the attenuated, and two non- 
attenuated waves, as compared with the usual three 
waves in a traveling-wave structure or a n/2-mode 
standing-wave structure. The Pierce-type non- 
dimensional coupling constants for the n and n/2 
modes will be related by 

For typical values of the parameters, C, will be 
about twice C,/2. However, because of the small 
attenuation constant for the n/2 mode, the start- 
ing current for the blowup effect may be smaller 
for the ~112 than for the TI mode. At any rate, in 
a proton linac both starting currents will be of 
the order of 1 A and the difference is not as im- 
portant as in the electron case. 

In conclusion, from the consideration of wall 
losses and beam loading given above, and for the 
tuning errors discussed in the Appendix, the n/2 
mode is superior to the TI mode. However, from the 
consideration of shunt impedance the n/2 mode is 
believed to be inferior. If one still uses the 
TI mode because of its high shunt impedance, then 
it will be necessary to find a broad bandwidth 
structure. A combined n/2 and n-mode structure 
with a multiperiodicity as proposed by Giordano8 
is of interest in this connection. 
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haven National Laboratory, and to Mr. S. Giordano 
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cussions. He would also like to express his ap- 
preciation to Prof. R. Beringer for reading the 
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APPENDIX 
Effect of Tuning Errors 

The effect of tuning errors in each cell on 
field distribution has already be$nLstudied in - 

some aspects of proton linac studies.'?" This 
work is done to show clearly the different behav- 
ior between the r~ and n/2 modes. 

By analogy with Panofsky's method for an 
Alvarez cavity, the tuning errors along the cavity 
are written as a Fourier series, 

co 

w;(z) = UJ; 1 + 
v 

c 1 ,p, cos y :1 . 

r=l 

For a general study, we consider the field varia- 
tion corresponding to these errors as an expansion 
equation in normal modes. 

Assuming the z-dependence of the axial field 
in a normal mode as cos nnz/L, the perturbed field 
is given by 

m 

En(z) = E cos = + 
L 1 Ts 

STTZ cos - 
0 

L j , (A.2) 
s=-m 

Lo - K, 
n S 

where r(X)) takes (n-s) or -(n-s) values depending 
on the sign of (n-s). Inserting (A.3) into (A.2), 
we can write 

C 'r 
rnz ) 

cos -7 J (A.4) 

r=l 

with 
2 

II 
1 

Er = PreJn 2 2 ' j (A.5) 
Lc -w + a2 - f&2 

n n+r n n-r 

These equations accord with Panofsky's formula when 
n = 0, and are also applicable to any perturbed 
normal mode. For the n mode, using the dispersion 
equation of (1.2), one gets the amplification fac- 
tor, 

E 4 N2 w2 
-K- -n 
pr n2 r2 B 

(A.61 

on condition that r << N. This expression shows a 
fairly good agreement with the experiments by 
Giordano," and the calculated amplification factor 
reaches 4.5 x lo3 for a 30-cell structure with a 
bandwidth of 8%. In contrast, in the n/2 mode, for 
a symmetric dispersion curve, UJ,,+~ - wn = -(w,-,-on) 
in (A.5), so that cr is cancelled inthe first order 
and only a small effect due to the tuning error is 
to be expected. 

*Private communication. 

?-(BEAM) 

Vector diagram of the field in the m th Figure 1. cell of a n-mode cavity. 


