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SUMMARY 

A comprehensive computer program for a high- 
current accelerator operating in the 100 ampere/ 
10 MeV range has been developed. The accelera- 
tor is a narrow-bandwidth, coupled-cavity device 
with or without feedback between input and output 
cavities. Equations for the transient behavior of 
both the pumped or buildupp’hase and the accelera- 
tor phase have been programmed to allow for a 
wide range of design parameters such as number 
of cavities, cavity-cavity coupling, beam-cavity 
coupling , cavity loss or Q, stagger tuned cavi- 
ties, input-output cavity coupling, and injected 
current as a function of time. The sinusoidal 
electric field in each cavity is expanded with the 
resonant modes, excited by the beam and 
boundary-matching magnetic current on the ten-‘ 
ter holes. The irrotational field is computed as 
the unretarded Coulomb field of the beam as a 
collection of discs and t-heir images. Feedback 
and feedforward waves in a waveguide which 
couples input and output cavities are represented 
by cutoff and propagating waveguide modes decom- 
posed into Fourier components. Some computa- 
tional properties of the program are discussed. 

DESCRIPTION OF THE PROGRAM 

The program has been developed for a high 
speed large memory digital computer to analyze 
the detailed behavior of a resonant ring accelera- 
tor in particular. This structure is pumped to a 
high energy during a time on the order of a mi- 
crosecond and then depleted of energy during a 
time on the order of 15 nanoseconds or 45 rf 
periods of the microwave (S-band) frequency. In 
a high-current accelerator the space charge 
effects upon the solenoidal field and upon the ir- 
rotational or Coulomb repulsion between current 
elements (discs) are not negligible. In this pro- 
gram they are accounted for during each inter- 
val of time when the amplitudes of the solenoidal 
resonant cavity modes are integrated forward 
in time and the equations of motion for the var- 
ious discs of charge are solved according to the 
total instantaneous axial electric field on each 
disc. 

Specifically the program is written to describe 
the following phenomena. The entering prebunched 
current is decomposed into thin discs of varying 
charge and perhaps velociyy, the total number 
limited by computer storage. As a disc approach- 
cs the first cavity it moves according to the Cou- 

, 

lomb field of neighboring discs, their images, and 
the field created by magnetic current placed on the 
first centerhole to match boundary conditions there. 
A disc just leaving the last cavity is influenced by 
similar field components. A disc: inside a given 
cavity moves according to the total axial electric 
field consisting of (a) a.solenoidal portion repre- 
sented by resonant cavity modes, the amplitudes 
of which are determined by the total cavity current 
and boundary-matching magnetic current on the 
centerholes and surfaces ,joining a feed-through 
rectangular waveguyde, if one is present, and (b) 
the irrotational or unretarded Coulomb field of the 
discs in the given cavity and their images, the 
latter chosen to satisfy the boundary condition of 
normal electric field on the transverse walls of 
the given cavity before the holes are cut. In any 
cavity the magne-rrent creates no Coulomb 
electric field. 

The amplitude of each resonant cavity mode 
(so-called short-circuit mode) is evalua,ted by a 
straightforward procedure1 of solving Maxwell’s 
equations within a closed volume containing elec- 
tric currents insideand magnetic surface cur- 
rents on part of the surface. Loss in the cavity 
walls and/or loss due to external cavity loading is 
accounted for by a phenomenological term in the 
equation of motion for each mode amplitude. The 
magnetic current on each centerhole is angularly 
flowing and a function of radial position on the 
hole, since the resonant modes and discs of 
charge are not angularly varying. This current is 
expanded in radial moments, each of which is de- 
termined by many radial moments of the total so- 
lenoidal and irrotational electric field on the cen- 
terhole so as to guarantee continuity of normal 
electric field across the hole. In addition the amp- 
litude of each resonant cavity mode in the first or 
last cavity may be influence-d by tangential elec- 
tric field on a surface which joins the cavity to a 
feedthrough waveguide connecting the input and 
output cavities. This tangential electric field is 
expanded with tine cutoff and,propagating wave- 
guide modes of (a) the wave arriving from the 
other cavity, (b) the “driving” wave which is pre- 
sent during the buildup p’nase, and (c) the wave 
which is launched to provide for continuity of tan- 
gential magnetic field across the surface which 
joins t‘ne first or last cavity to the waveguide. To 
obtain physical realism and minimize the accumu- 
lation of computational error it is necessary to 
expand the time dependent amplitudes of the wave- 
guide modes into Fourier components,over a fre- 
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quency range of, cay, twice the cutoff frequency 
of the dominantrectangular waveguide mode. 

The irrotational component of the space charge 
field at any point within a cavity due to a disc or 
one of its images within that cavity, or on a cen- 
terhole as due to a disc or one of its images with- 
in t’he cavities on either side, is computed from 
analytic approximations to the exact field in the 
vicinity of a disc a? given by a Legendre-poly- 
nominal expansion . This representation is pre- 
ferable to a slowly convergent expansion in irrota- 
tional modes because of the limitation on computer 
storage space. 

APPROXIMATIONS 

1. 

2. 

3. 

The accelerator chain of cavities is angu- 
larly symmetric; if a feedthrough wave- 
guide couples input and output cavities in a 
nonsymmetric fashion the excitation of 
angularly-varying cavity modes is neglec- 
ted. 
The cavities all have the same radii, so 
that the resonant frequency of the first or 
TMOIO mode is the same for all. 
The surface which joins the input and out- 
put cavities to a rectangular feedthrough 
waveguide, if present is assumed to ex- 
tend over the entire guide cross section; a 
smaller iris would.require the solution of 
a set of simultaneous equations for the 
amplitudes of the guide cutoff and propa- 
gating modes launched at any instant of 
time. Curvature of these surfaces is ne- 
glected. 

EQUATIONS 

The mth solenoidal resonant cavity mode is de- 
fined with vector (denoted by a bar) patterns Ei 
and RE within cavity n at point 7 as 

ox?+) = k;<(F), &l; = k”.E; (la) 

j$E”(;!fdv = [VIFl:(i)]adv = ~‘9 

volume of cavity n (lb) 

E;(F$ii = 0 on cavity n surface (lc) 

If only the m=l or Ti~~o,o mode is emplo ed to 
approximate the fields the electric field En Fat) 
in units of energy is 

ec 
a En(i;,t) = aa v”(t)E; (P) 

01 mot 9 mot 

= wn (t)E; (r; (2) 

where e is the absolute charge of an electronof 
rest mass mo, c is light velocity, W1=klc, the 
same for all the cavities, and k,R=2.405. W’ is 

c energy el,ectronwould gainfrom 

w”(t) =kr 
Y field Vn in a free space wavelengt 

electron rest energy 43, 

Furthermore, if the coupling holes between cavi- 
ties are small the equation for W’ is, with 
JI=wlt, 

--__- .-.- __ . .-_- .._ -.. .___._ 

4. 

5. 

6. 

W”($) = E-W=qJx2n 
[W”(Oj cos (Wb$) t W”(0) sin (W’$)/WD] - 2- ‘(wn)-l. 

I 
Jr 

Cm 
n,n,l n-1 

0 

W ($~)+m”~“f1W’f1(~~)~~~~~‘t’~wn’2Qnsin Wn(Jr-S~)d~! 

cos Wn(~-J')~-(~-~')w='2Qnd~~ 
(4) 

The waveguide of a resonant ring accele- 
rator is driven during the pumping phase, 
through a coupler assumed to,be unidirec- 
tive , The guide transmission factor in 
either direction between input and output 
cavities is assumed to be frequency inde- 
pendent. 
Radial motion of the discs of charge is ne- 
glected. 
The circular walls of the cavities are 
assumed not to influence the Coulomb 
(irrotational) electric field due to the discs 
and their images chosen to keep the elec- 
tric field normal to the walls between 
cavities before the center holes are cut. 

Here 

Q” = quality factor of the m=l mode in 
cavity n 

. = d/dJr 

m =>=a (<o) . 1s 3a dimensionless coupling co- 
efficient between cavities n and n&l. 

n 
W = l+;jm*‘n-l ] +$I mnJn+l 1 , the iirst reso- 

nant frequency of cavity n with its cen- 
terholes present, normalized to pi. 
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If the two holes are the same size mntn 
-1 

=m 
n,n t= 

and wn is the normalized 712 phase shift frequen- 
cy in an infinite chain of such cavities. 

Q, = ec a 19” = (~~~/w~)~, 
%mo= Eokl 71 

where Q is the negative charge of disc d and w 
is the r@sonant frequency of an infinite plasma pd 

of charge density q, 17:. 

ET = axial electric field pattern averaged over 
disc d. 

Jf n=l , signifying the first or input cavity, the 
right side of (4) would omit the mnzn-r term and 
would contain the term 

Here HF,B are the magnetic fields of the feed for- 
ward waves launched frpm S1 and the feedback 
waves launched from S’, respectively. W is the 
amplitude of the driving electric field on S ld in units 
of energy. qg is k,,L , the electrical length of 
the feedthrough waveg de at cutoff frequency wol. 9i 

RF+? 6’) on s’ = ‘cavity 1 - gfeedback 
(7a) 

-Hdrive 

'B('J Jr') On SN = Ecavity N - gfefeed forward (7b) 

where Rfeedback is given by the second term of 
(6) ‘out without the relevant factor in brackets, 
with the overall sign changed to t, and with 
[To, Is1 changed to C~ol]sl I 

where C,g =Ag/ (lci 7r) I a dimensionless coupling 
coefficient in Fig. 1, Ag being the waveguide 
cross sectional area. 

A term analogous to (5) would appear in the 
equation for WK( ti& of the last cavity, excited by 
electric field on S . 

If the waveguide excitation is represented by 
the dommant TE,, (“01’ 1 iLl this notation) mode 
then E(r, t) on S1 is CornpOSed of (a) the driving 
field coupled into the feedthrough waveguide 
through a directional coupler, (b) the incoming or 
feedback wave which has been launched from the 
last cavity, and (c) the outgoing or feedforward 
wave which is launched from the first cavity in 
order to satisfy the boundary condition of contin- 
uous tangential R field dn S1 . The Fourier decom- 
position of E on S1 is, with $=ort and i=,J-T, 

More generally W”, ($), the amplitude of the mth 
mode in cavity n, would be determined by the total 
magnetic current RM(r, I$) on the centerholes by 
the term 

a R,(E g’). lQqds. 

E -4 (14-$‘)/2Q”, sin wE($-,$t)d$t 

instead of by the first integral term in (4). If the 
total normal incident field on a hole is Ei, expan- 
ded in radial moments or powers of C/b (b = hole 
radius) as 

EC -- 
a E(r, +>O) on Sr = 

w1 inoc 

l’J1-(Wol’W)~,propagating 

fw)’ -1 , cutoff 1 

L 
exg(-iJw/wol 

1 
1” -1 $,)/Jff, propagating 1 

,e,,,m--=-y * 

iex?(-, ~$g)!~woJw)=l’, cutoff lr 5 
45 w1 mot 

iidSN + w, CO6 wd $ i?-o~ (qlsl > (6) 
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M 
ec 

(9) 
@l mo= 

a ;E’, c, $7 = r~oA2n(qttl(6/bi- 

and XM(r, I$‘) is expanded as 

-- 
ec 

cxa 
-a R&I, $7 =- 
Wl m*= J(balca) n=O 2n 

f B 

air 

((I’)(&) (10) 

zz being the unit vector in the z-direction, then 
the Bs are determined by the As so as to main- 
tain continuity of normal electric field4 as 

B2m = c(-) 
m 2A2mr(m+2) _ &, 

(m+l)r(m+~) 

where r is the ordinary gamma function, and 

n 
a i?a+$ 

S(m*) = c x&$-T rm &, * 
a=m 

Eqs. (9) - (11) enable a computation of the cavity 
excitation term (8) from knowledge of the total 
axial electric field on each centerhole. 

The analytic expressim s for the irrotational 
field in the vicinity of a disc due to its charge are 
not quoted here. 

The equations of motion for each disc to be 
solved during each short time interval A$ are 
written 

Av,((r)/C = -[l-(v*(~)/c)a]3~ $ ec s l 

9 mo= 

1 

I E 
0 

2, total (~)2+& 

. . . . a being the disc radius. Last of all, 

Vd ($1 
hzd(‘#) = 7 A$ (13) 

expresses the change in position of disc d. 

RESULTS 

To date the initial pumping phase of a resonant 
ring structure has been studied in the absence of a 
beam via Eqs. (41 - (7). In order to reduce com- 
putation time, integral Eq. (4) has been applied 
over a succession of short time intervals com- 
prising the interval of interest rather than over 
one long interval. Early in the program the feed- 
back and feedforward waves were not decomposed 
into Fourier components ‘out instead were approxi- 
mated by propagating TEOl waves of a single 
velocity w’hich were launched and reacted back up- 
on the cavities according to instantaneous steady- 
state equations. This representation caused in- 
tolerable error in computation of the cavity volt- 
ages over a few rf cycles. With the feedthrough 
waves decomposed into Fourier components 
traveling at different velocities through the wave- 
guide the feedthrough effect is less of a step 
function on both the input and output cavities. 
Even so, the computations to date indicate that 
the errors in computing cavity voltages by Eq. (4) 
from the succession of convolutions over short 
time intervals tend to be inacceptably large. Sub- 
sequent work may demonstrate that the voltages 
are computed more accurately from the difference 
equation approximations to their different ial 
equations rather than from integral equations. 
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