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Abstract 

The interaction of the bunched particle beam 
in a linear accelerator with the waveguide struc- 
ture produces several effects which go under the 
general name of beam-loading. These effects in- 
clude reduction, redistribution, and phase shift 
of the rf field in the waveguide, changes in the 
tuning of the waveguide structure, excitation of 
other waveguide modes, and various transient phe- 
norlena. 

A discussion of these various effects and 
methods for their calculation will be presented. 

Introduction 

The process of accelerating particles in an 
accelerator implies that energy is removed from 
the accelerator. In the linear accelerator this 
transfer of energy from the accelerator to the 
beam can be so efficient that the behavior of the 
accelerator can not be even qualitatively describ- 
ed without consideration of beam loading. The en- 
ergy of the particle beam can easily be changed by 
a factor of two or more due to beam loading, and 
changes of the radio frequency power density at 
some points in the accelerating waveguides of an 
order of magnitude are observed. 

The tightly bunched characteristic of the ac- 
celerated particle beam in the linear accelerator 
together with the pulsed nature of these beams and 
the narrow band-pass-characteristic of the acceler- 
ating waveguides produce a number of effects which 
have become important in present day linear accel- 
erators. These effects include transient phase arrl 
amplitude oscillations in the rf transmitted down 
the waveguide, limitation on the amount of beam 
which can be accelerated in very short beam pulses, 
excitation by the bunched beam of spatial harmonics 
in the waveguide, and beam excitation of the wave- 
guide at frequencies in other pass-bands leading 
to deterioration of beam optics in general and de- 
flection of the beam into the waveguide walls in 
some cases. These effects will be increasingly im- 
portant in the next generation of linear accelera- 
tors, especially for accelerators designed for ac- 
celerated beams of tens of amperes in short nano- 
second bursts. 

This report is concerned primarily with disk- 
loaded accelerator structures, although the gener- 
al techniques should be applicable to other accel- 
erators. Most of the examples to be presented have 
been calculated for traveling wave accelerators 
whose structure does not change down the length of 
the waveguide, the constant-structure accelerator, 
althou&h some information is presented on other ac- 
celerator types. 

The report is divided into two parts. First 
we present a brief outline of beam loading theory 
in linear accelerators based upon the rf power dif- 
fusion equation in the waveguide structure. This is 

the most cormnon approach to beam loading and gives 
reliable results where dispersive effects and ef- 
fects due to the phase bunching of the particle 
beam can be ignored. Next we present a more gen- 
eral approach based upon filter theory which al- 
lows inclusion of dispersive effects and effects 
due to the bunched nature of the particle beam. 
Examples are presented which illustrate various 
effects. 

I. Beam Loading Theory based upon Power Diffusion 
Equation 

The most common approach to beam loading in 
linear accelerators is to start with the power 
diffusion equation 

dP - = -2IP-FE, 
dz (I-1) 

where P is the rf power density, I is the field 
attenuation factor, and i is the instantaneous 
beam current averaged ever the rf structure of the 
beam. The term iE is introduced to represent beam 
loading. Using the definition of shunt impedance, 
r, of the waveguide, 

-2 -2 
r=&=hp. (I-2) 

dz 

Equation I-l can be converted to an equation for 
the electric field in the guide, 

dE z =-IE-Iir . (I-3) 

From I-3 one obtains an expression for the 
electric field, E, as a function of z. 

E(z) = Eoe -Izbi, / lme-Iz 
L 1 $1-4) 

Equation I-4 is a steady state equation. E 
is the peak electric field at the beginning of ' 
the waveguide. It is multiplied by an attenuation 

factor e 
-12 

and reduced by a beam loading term 

-ir l-e c 
-12 

>' . Equation I-4 can be thought of as 
two fields: the usual term from the power source 

looks like e 

-ir 1 e I2 ' L- J 

-12 , the beam loading term is 

, and the sum of these fields is the 
field which particles in the waveguide see. This 
separation into two fields is a natural result of 
the superpostion theorem. 

Equation I-4 was developed assuming that the 
particle beam bursts entered the waveguide at the 
crest of the rf field. This is not always the 
case. If the beam bursts enter at angle F with 
respect to the peak rf field from the power source, 
the field the beam particles see will be 
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E(z) = Eo cos $ e-I'-ir cl-e-1'). (I-5) 

The energy gain V of the beam particles is ob- 
tained by integration of Equation I-5 over the 
length L of the waveguide section. 

V = EoL cos Q: cej -irL (1- $1. (I-6) 

Equation I-6 can be expressed in the con- 
venient form 

v = v. cos G p- $ j, (I-7) 

where 

‘i’O 

is the energy gain for beam particles riding on 
the rf wave in the absence of beam loading, and 

(I-9) 

is the beam current corresponding to maximum ef- 
ficiency for transfer of power to the particle 
beam. At current i m the fraction of rf power 

from the power source, om, transferred to the 

beam is given by 

-1-L-1 
i, = 1/2 cos2 p - e 

m 
I- y-$z 

(I-10) 

Equations I-6 to I-10 represent the basic de- 
sign information required for most constant struc- 
ture traveling wave linear accelerators. Figure 1 
illustrates the dependence of pm, i and V 
attenuation length, IL, of the wavezuide. ' 

upon 

Figures 2 and 3 illustrate the large redis- 
tribution of E(z) and of P(z) which can occur in 
the waveguide due to beam loading. Three cases 
are shown. First the case of no beam current, 
second the normal accelerating condition where the 
beam is phased to ride on the crest of the rf wave 
from the power source, and third the case where 
the beam is back-phased 180' so that the beam load- 
ing wave adds to the field from the rf power 
source. For intermediate cases, where the part- 
icles enter the waveguide at some phase @ between 
0 and 180°, the phase of the total rf field rela- 
tive to the bean will vary continuously depending 
upon the beam current and the distance down the 
waveguide. 

The solutions presented previously represent 
the steady stare behavior of linear accelerators. 
It is possible ,2 to extend this same general 
approach to include transient phenomena by includ- 
ing the fact that P(z), i, and E(z) are also time 
dependent quantities with power density P(z,t) and 
field E(z,t) traveling in the waveguide withLgroup 
velocity v 

8 
and waveguide filling time 

An example of the types of effect observed is 
given in Fig. 4 where the relative energy gain of 
beam current i is plotted as a function of time 
for different turn on times & of a step function 
particle bean after rf power turn on. 

The above description of linear accelerator 
behavior has been developed for the constant struc- 
ture accelerator in which the waveguide parameters 
do not change over the length of the waveguide. 
Many linear accelerators are not of this form but 
have parameters which vary down the length of the 
waveguide section. These are often referred to 
as constant gradient accelerators since the group 
velocity in the waveguide can be reduced at such 
a rate as to overcome the normal attenuation of 
the rf wave as it travels down the waveguide and 
thus produce constant rf field in the absence of 
beam loading. 

The theory of the constant gradient acceler- 
ator can be dev 
presented above 5 

loped in a similar manner to that 
by including specifically the 

variation of waveguide parameters in the diffusion 
equation. The largest influence of the constant 
gradient structure on the effects thus far con- 
sidered is an enhanced influence of beam loading 
upon the rf4field toward the end of the acceler- 
ating guide . For large beam currents, these 
fields can be so large as to exceed the break- 
down limits of the structure and thus lead to 
serious sparking. The advantage of the use of 
constant gradient or variable structure wave- 
guides for high current linear accelerators is 
primarily their ability to reduce the tendency to- 
ward excitation of higher frequency modes in the 
waveguide with consequent loss of beam (beam blow- 
up>. 
II. Filter Theory Approach to Linear Accelerators 

The previous analysis rests upon assumptions 
which are strictly valid only for a continuous 
wave accelerator. These assumptions are that the 
rf field in the accelerator is at one precise 
frequency, and that sharply rising waveforms are 
transmitted in the accelerator without distortion. 
Due to the pulsed nature of these accelerators, 
the first of these assumptions is necessarily in- 
correct because of the frequency spreads inherent 
in switching transients. The second assumption 
can not be strictly true since the accelerator 
is essentially a band pass filter. It is still 
a good assumption, however, provided the frequency 
spread in the rf pulse is essentially all con- 
tained within the pass band of the accelerator and 
provided the phase shift varies linearly with the 
frequency over the frequency range of interest. 

It is further assumed in the previous analy- 
sis, although reasonably well hidden, that the 
particle beam contains only one frequency compon- 
ent. Due to the very tight phase bunching in 
linear accelerators, this assumption is substan- 
tially incorrect. The beam is in fact very rich 
in harmonic structure. 

13 this section we present a very general ap- 
proach to the linear accelerator based upon fil- 
ter theory which allows an examination of these 
dispersive effects. As in the previcus section, 
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the specific results presented will be for the con- 
stant-structure traveling-wave linear accelerator, 
however mention will be made of the constant gra- 
dient accelerator and the standing wave acceler- 
ator. 

Two general classes of solution to the linear 
accelerator will be presented, one in which the 
specific dispersion effects of the narrow band- 
pass accelerator structure are included, and a 
second in which the dispersive effects of the 
waveguide are ignored, however the bunched nature 
of the particle beam is retained. For this 
second type solution the Linear accelerator theory 
resulting corresponds essentially to the solutions 
found from the power diffusion equation as re- 
gards the fundamental accelerating mode. For 
higher spatial modes and for excitation of other 
waveguide pass bands the beam Loading predictions 
are different. 

The general nature of the dispersion diagram 
for a disk-loaded waveguide is indicated in Fig.5. 
The imaginary part, @, of the complex phase shift, 
r, in the waveguide is plotted against frequency 
for unit length of waveguide. (In the convention 
indicated in Fig. 5 and in the treatment which 
follows the unit length of waveguide is taken as 
twice the distance between Loading disks.) At a 
given frequency (0 within a pass-band, the propa- 
gation constant r('JJ) can have several values; 

rm,n(JJ) = l?n,o(u) + 4nni, for f3 > 0, (II-l) 

and 

l?n,,(~) = rmjel(U) + 45mi, for B < 0, (X-2) 

where rrn (ru) &a the complex phase shift for 
039<21r i?ij?he r f requency mode and rml -1 C") is 
the complex phase shift for -2n 5 @ 1. 0.' 

It is a general result of Floquet's theorem6 
for periodic structures that the value of a wave 
at point q in the structure V (W) is related to 
the wave V,(~) at the beginnl g of the structure 4 
by the relation 

-qr, ,w 
a m,nCU>e ' . (11-3) 

or 

V c')) = V ca) G ('u), 
q 0 9 

where 

0, 
GqP> = 1 

-qr 
am ,P>e m,n(W) 

, 
n= -co 

(11-4) 

(11-5) 

The coefficients a (W) are determined by the 
necessity of matchThE the boundary conditions on 
the walls of the waveguide. For the pass band of 
greatest interest, m=o, which is the accelerating 
node, a o,o~") is usually approximately one and the 

other modes are generally neglected. In most of 
the analysis which follows we will assume 
a CD) = 1, a (u) = 0,&o. This is the assump- 
t%n" usually 282 in calculating linear acceler- 
ator behavior. Thus Gq('u) reduces to 

(U-6) 

where we have suppressed the subscripts on ~('JJ). 
G,(m) is the response at point q of the waveguide 
to a delta function impulse at the entrance to 
the waveguide. Knowing P(co) one can apply inverse 
Laplace transforms to determine Gq(t), the delta 
function response of the waveguide as a function 
of time. Applying the superpostion theorem allows 
one to determine the waveguide response for an 
arbitrary input rf waveform. 

We have examined Linear accelerator theory 
for two expressions for r(W). In the first we 
include dispersive effects and attempt to make 
good analytic fits to experimental phase shift and 
attenuation data. For the usual constant struc- 
ture accelerator one may write as a good approxi- 
mation 

cash r(w) = 1 + 

where (uo is the mid-band frequency difference be- 
tween the n mode and n/2 mode, and a0 is the 
attenuation coefficient at the mid-band frequency 
'00. A similar expression has been used by Robson'l 
to fit waveguide dispersion curves neglecting 
attenuation. 

From Equation II-7 the delta function re- 
sponse of the waveguide can be calculated. 

.I 

Gq(t) = 2q 
3 P,t) i(wOt-zq) -ao",y2 

t 
e e . (11-8) 

A second approximation to rcu) which ignores 
dispersive effects is to expand I'(lU) around some 
operating frequency wa. 

rp) = ra + r'a(iw-i(J)a) + *es , (11-9) 

where 

From Equation II-9 the delta function re- 
sponse of the waveguide is 

rt -a 
icu t r' 

G:(t) = 6(t-qr'a)e a e a (II-LO) 

In this case dispersive effects are neglected. 
The interpretation in terms of a delta function 
impulse moving down the waveguide is apparent. 
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Pulse transmission in the waveguide. 

By taking the inverse transform of Eq. II-4 
we obtain the response of the waveguide to arbi- 
trary input signal. 

Vq(t) = l; Vo(t-T) Gq(r) d,r. 

In general the solutions found including dispers- 
ive effects require computer evaluation to be 
meaningful. gor illustration we give solutions 
found using Gq(t), Eq. 11-10. Let: 

Vo(t) = e 
i'uat 

, t,o> (11-12) 

a step function at t=o modulated by rf at frequen- 
Cy INa. The signal at point q in the waveguide is 

Vq(t) = e 
iPat-Pas) -aas 

e , t Let (X-13) 

= 0 , t w’, 

where we have written the complex phase shift Pa 
as 

ra 
= a, + if3,. 

Figure 6 shows rf pulse transmission calcu- 
lated for a specific waveguide using both Eq. II-8 
and II-10 for Gq(t). These calculations were for 
a specific S-band accelerator waveguide of 86 
disks. The various waveforms shown are for dif- 
ferent rise times of incident rf pulse V,(t). 
Z:(t) represents the solution 11-13. In addition 
to the rf amplitude modulation exhibited in Fig. 6, 
there is considerable phase modulation during the 
rising portion of the curve. 

Energy Gain at Vanishing Beam Current 

In the absence of appreciable beam loading, a 
particle passing through the waveguide sees the rf 
field Vq(t) in the waveguide at the time the parti- 
cle reaches point q. The integration of this 
field over the waveguide is the particle energy 
gain. We define the time for a particle entering 
the waveguide at time t=o to reach point q to be 

transit time of particle to point q=q( e, . (II- 15) 

If -rr+yo+ =o, 
with the Gave. 

the particle motion is synchronous 

For particles entering the waveguide at time 
t, their energy gain, AE(t), is 

4E(t) = s", vq (t+s %I dq, (11-16) 

where q, is the length of the waveguide. 
Figure 7 shows an example of AE(t) for the 

same 2n/3 waveguide discussed previously in Fig. 6 
for the case where the particle and wave velocity 
are the same. 

Linear Accelerators with Beam Loading 

Consider a unit delta function current pulse 
entering the waveguide at time t-0. This current 
pulse will arrive at some point u at t'ime u(m). 
As the current pulse passes point u it inducet an 
impulse in the waveguide and consequent forward 
and backward waves are transmitted to other points 
of the waveguide. The general form of these 
transmitted waves is that of Eqs. II-8 or 11-10, 
the response of the waveguide to a delta function 
impulse. 

We wish to know the rf wave at a point q in 
the waveguide due to the interaction of the cur- 
rent pulse with the waveguide at all points u. If 
q>u the wave which reaches point q is a forward- 
going wave. If q<u the wave reaching q is a back- 
ward-going wave. 

Thus the forward-going induced rf waves at 
point q are 

with a similar expression for the backward going 
wave. The coefficient Kf is an undetermined cou- 
pling of the beam pulse to the waveguide. We as- 
sume this coefficient to be real and positive; 
however we have no valid justification for this. 
The negative sign is to account for the fact that 
the beam induced wave is such as to decrease the 
electron energy. 

Equation II-17 represents the induced wave 
due to a single delta function current pulse 
entering the waveguide at time t=O. The induced 
wave due to arbitrary current pulse can beffound 
by folding the actual current pulse with V (t). 
We will consider one special case. We wou d like 9 
to determine the beam-loading wave for a series 
of delta function current pulses occurring at 
repetition ra 

E 
e m. For this case the folding 

integral of V 
P 

(t) with the true current distribu- 
tion reduces o a sunnnation of time delayed waves 
of the form given in Eq. 11-17. If the first cur- 
rent e#lse enters the waveguide at time t=O, then 
the k-2Xcurrent pulse will enter the waveguide 
at t=($k. Thus the forward going wave, W{(t), 
for this repetitive pulse situation is 

w:(t) = z vgf(t+, 
k=o 

(11-18) 

where t-u x+Yo 2n ( u) 
Eq. 11-17. 

-)-w+ 20 and Vi(t) is given by 

We would like to know the change in energy 
of a beam particle due tghthis beam-induced wave. 
For a particle in the km- pulse, the particle 
passes point q of the waveguide at time 

t-&k +q(*). 
time at"poin'ut q is 

The beam induced rf at this 

w; [t= skm+q(e)]. (11-19) 

The energy change, AE: 
th 

, of the km- particle is 
m 
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obtained by integrating Eq. II-19 over the length 
of the waveguide. 

AEk' = j-: Wilt= g km + q(p)]dq, 
m 

where g (km-k) + (e) (q-u) L 0. 

AE; represents the energy loss due to rf 
m 

fields in the waveguide induced by the beam. To 
this should be added the energy gain of the beam 
due to rf from the power source, Eq. 11-16, to 
obtain the total beam energy change in the wave- 
guide. 

Evaluations of Eqs. II-17 and II-20 are too 
cumbersome to place in this report but can be 
found in reference.' Except for effects which 
occur for extremely short beam bursts, beam load- 
ing effects are essentially the same as those 
calculated from the power diffusion equation. For 
extremely short high intensity beam bursts however, 
large effects are predicted, resulting in sub- 
stantially greater beam loading than would be pre- 
dicted by the power diffusion equation. Figures 
8 and 9 illustrate this effect. What is plotted 
in these figures is the contribution to the beam 
loading energy loss, AEkf , due to beam loading by 

the km& beam pulse and &e#ous beam pulses. The 
total energy loss of the km- pulse is therefore 
the sum of km points from this curve. Figure 10 
illustrates such a sum for three cases; Ah=1 
corresponding to injection every rf cycle, and 
Ah=3 and Ah=5 corresponding to subharmonic in- 
jection every third and fifth rf cycle respective- 
ly. 

The '; mode, L-band waveguide used to calcu- 
late Figs. 8 to 10 has a steady state current lim- 
it in,, Eq. I-9, of 0.684 amperes with 10 megawatts 
of input rf power. For this waveguide and input 
power, Figs. 9 and 10 indicate that a beam current 
of 24 amperes in a beam pulse one rf cycle wide 
would have a beam loading energy loss of SO%, 
when dispersive effects are included. If disper- 
sive effects are neglected, the corresponding 
prediction is a beam current of about lo3 amperes. 
While this result is quite sensitive to the de- 
tailed nature of the beam pulse, it does indicate 
the extreme importance of dispersive effects for 
high current, nanosecond pulsed accelerators. 

Beam Excitation of other Spatial Modes in the 
Waveguide 

We have thus far neglected the influence of 
all spatial harmonics in the waveguide except that 
represented by PO o(J)), Eq. II-S. The response 
function G:(t) fo: these spatial harmonics is 
simply related to Gq(t) by (neglecting the coef- 
ficient a o,n('U)J 

G;(t) = Gq(t) ewi4xnq, n integer. (11-21) 

It is usually argued that these spatial har- 
monics are incoherent with the beam pulses and 
have very little average effect. For rf in the 
waveguide from an external power source, this can 
be shown to be true;5,6 however for beam induced 
rf waves it is not true in all cases. An evalu- 
ation equivalent to Eq. II-20 for beam energy loss 
due to exitation of the _th spatial harmonic, 
either forward going waves or backward going waves, 
shows that there is transient beam loading due to 
excitation of these spatial harmonics. The time 
for this transient effect depends upon the group 
velocity in the waveguide. 
n/2 or 2m/3 waveguides, 

For typical cases of 
this transient effect will 

last about 100 rf cycles. In the special case 
however of accelerators operating with zero group 
velocity, the excitation of these spatial harmonics 
is completely coherent with excitation of the fun- 
damental harmonic for both forward and backward 
going waves. In this special case beam loading 
will be about twice as large as that predicted if 
one considers only the fundamental forward going 
wave. 

Application to Other Structures 

The filter theory approach discussed pre- 
viously has thus far assumed a constant-structure 
traveling-wave linear accelerator. In this sec- 
tion we would like to indicate the application of 
these techniques to other structures, namely the 
standing-wave linear accelerator, and the constant- 
gradient traveling-wave accelerator. 

Standing Wave Structures 

One converts a traveling-wave structure into 
a standing-wave structure by placing suitably re- 
flecting terminations on the waveguide. Neglect- 
ing the problem of coupling to the power source, 
the response function Gq(t) analogous to Eq. II-10 
for this structure is easily determined by simply 
adding the various time delayed and attenuated 
waves. Thus for a standing-wave structure of 
length qm (2q 
the transfer P 

loading disks in the waveguide), 
unction which represents the forward- 

going waves israt 

ill)t-r- 
Gl(t)=e a e a 

k 
6 (t-q? 

a -2nqmr’a), (11-22) 

where the limit on n is given by t-qr' -2nq r'>O. 
If we apply an rf signal to the input aof tEi:- 
guide of the form given by Eq. II-12 the result- 
ant field in the guide is given by 

iNat -qi-, -, 
Vq(t) = e e z (e 

-2qmra n 
) , 

n=o 
(11-23) 

where t-qr'a-2nqmr'a) 0. 

In the steady state limit, letting r .-z +@ 
a a a' 

iP at-Baq) -aaq (11-24) 

lim Vq(t) = e 
1 

e 
* t-m c > 

l-e 
-2iq,B, -2qmffa 

e 
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Equation II-24 exhibits the expected normal- 
mode behavior of the standing-wave structure. 
There are Zqm+l resonances corresponding to fre- 
quencies having phase shift Sa between 0 and 2~. 

Beam-loading effects may be calculated 
exactly as for the traveling-wave accelerator 
using Eqs. II-17 to 11-20. 

Constant-Gradient Accelerator 

For the constant-gradient or variable struc- 
ture accelerator in which the parameters of the 
waveguide vary along the guide, the expression for 
Gq(fs) given in Eq. II-6 should be replaced by 

GqP> = ~(w,q) e 

-~@%s)dq 

, (11-25) 

Beam Excitation of other Waveguide Pass-bands 

The bunched nature of the particle-beam in 
the linear accelerator implies that the beam has 
frequency components which can excite other wave- 
guide passbands. The most important effect of 
this sort is the phenomena known as beam blow-up 
due to excitation of waveguide modes haxing large 
transverse accelerating fields. Wilson has pre- 
sented an explanation of this effect in analogy 
with the theory of the backward wave oscillator. 
Similar calculations have been made by Gluckstern' 
for standing-wave linacs. 

The calculations in reference 8 have been 
concerned primarily with dynamical effects. These 
effects will not be discussed here, but rather 
cohere ce phenomena will be discussed. 

!: 
A calcu- 

lation very similar to the development of Eq. 

the factor F(w,q) being required for normalization. II-20 can be made for beam excitation of higher 

We will considsr two examples of this type. It pass-bands. These calculations indicate that 

has been shown that the attenuation of the wave- the energy given beam pulses due to excitation of 

guide may be corrected to produce a uniform field some higher pass-ban&by a series of beam bursts 

in the guide by varying the waveguide parameters occurring at times (E)h, h integer, is of the 

such that form 

a cu 
0 

aa = lmaoq' al 

c 
[slowly varying coefficientle 

i2n c h 
, (11-30) 

B,(q) = B,, (11-26) 

r’ 

and r’,(q) = Gq , 

where ao, t3, and F represent the parameters at 
q=o. From Eq. 11-35 one can show that for this 
case the transfer function corresponding to Eq. 
II-10 is 

i W t - 

i 

B,qt 

a r' 1 
) 

at 
0 - -0 
aO 

In (l-aoq; r-1 
0 

e e (11-27) 

Beam loading effects may be calculated as before 
using Eqs. II-17 to 11-19; however now Eq. II-17 
becomes more complicated since care must be taken 
to use appropriate starting values of the param- 
eters corresponding to the source point u. 

A second illustrative example, of interest 
to study of the beam-blow up phenomena, is a 
waveguide whose phase shift Da varies along the 
guide. We consider the special case of 

B, (4) = Bo(l.r74), (II-281 

with aa and I'la assumed independent of q. The 
transfer function in this case corresponding to 
Eq. II-10 is _ . 

i 

'tat-@c$- F i$ $ 

Gq(t)=G(t-qI'A) e 
a a a 

e I _ e .(II-29) 

i 

where wa 
a 

is the frequency at which the higher 
pass-ban has phase velocity equal to the particle 
velocity. For many traveling wave electron linacs 
Wal/Wa x 3/2 and successive terms in the summation 
of Eq. II-30 tend to cancel. This is true for 
beam bursts occurring at any odd subharmonic of ma. 
If however beam injection occurs at even subhar- 
monies of wa, the cancellation of successive terms 
in Eq. II-30 does not occur and the tendency for 
beam-blow up is considerably enhanced. This is 
of concern, for example, in high energy proton 
linear accelerators where the transition to disk- 
loaded structures is planned with an even integer 
ratio between frequencies of bhe two portions of 
the accelerator. Calculations for typical stand- 
ing-wave structures using a normal mode treatment 
have indicated the effect is not too severe. The 
validity however of a normal mode calculation is 
not clear (see Eqs. II-23 and U-24) since summa- 
tions over normal mode frequencies are only an 
approximation to integrals over all frequencies. 

Suppression of beam blow-up by varying the 
waveguide parameters has been observed on many 
accelerators. Equation II-29 can be used to 
estimate this effect. We define a coherence 
length, 4, as the distance excited waves in the 
guide must move to fall out of phase by m/2. Due 
to the term Qotyq 

2r' 
a e in Eq. 11-29, this coherence 

length is 

(II-31) 
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Beam blow-up can not occur if the guide length 
required to start the backward wave oscillator 
with a given current is larger than a. In 
practical cases, this provides a powerful sup- 
pressant to the beam blow-up'phenonena. 
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Fig. 1. Plot of +, i,, and V versus guide atten- 
uation length for a constant s t ructure traveling 
wave accelerator assunhg hput power PO and guide 
wavelength L are held constant. 
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FRACTION OF GUIDE LENGTH 
. 

Fig. 2. Relative accelerating field for constant 
gradient accelerator (IL-0.5) for no beam current,, 
beam current & with #I-O, and beam current i, 
tith +18Oo. 

I I , 
0 ,I 2 .s .4 .n .a .I . . . . I.0 

FRICTION OF W-LENGTH 

Fig. 3. Same as Figure 2 but for rf power density 
in waveguLde. 

‘L--.-J 0 .5 1.0 I.5 f/h 
fig. 4. Relattve energy gab of beam current I, 
for different beam turn on times during the rf 
filling time of the waveguUe. 
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I- 

I I I I I I I I 
B 277 3a 47 57 68 7T en 

B 
Fig. 5. The imaginary part, B, of the c:nnj\l.ex 
phase shift, l', for a typical disk-loaded waveguide 
structure plotted against frequency, 0. Three of 
the many pass-bands are indicated. Particle 
accelera ion Is usually in the region marked by 
To o (wf. Microtive partt$ separators operate 
in'the regi.on ;-.-irked Tl,o * 
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-, 
Fig. 6. Pulse transmission in7 mode S-band 
accelerator of 86 disks for different values of 
inputrisetime plotted against time in units of 

I?&t. The amplitucb z(q,t) is shown for the signal 
at different points In the waveguide calculated 
using Eq. 11-8. 
Eq. II-lo. 

2s" (t) is calculated using 

: 

2c 
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Ng. 7. Relative energy gain, AE(t), at vanish- 
ing current plotted versus time %n units ofoct for 
the same case as Fig. 6. The dotted curve 1s cal- 
culated using Eq. 11-10, the solid curve using 
Eq. 11-a. 
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Fig. 6. HelatFm beam loading energy loss for a 
series of 6 function current pulses passing 
through tno Gband wavegul.&es. The solid curves 
are calculated ustng Eq. 11-8, the dotted curves 
using Eq. 11-10. The waning ofthe cw~2s is 
that the value of the curve for h-0 corresponds 
to the energy loss of a beam burst to Itself. 
For h=l, the value of the curve corresponds to 
energy loss due to the previous&earn burst, etc. 
The total energy loss in the k- pulse If 

The solid curve 1~ calculated 
using Eq. 11-8, the dotted curve 
using Eq. 1140. 
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Fig. 9. Same as Figure 8, but with expanded 
scale. Note the increased beam loading indi- 
cated for very short beam pulses uhen dispersive 
effects are included. 
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Pulse Number, h 

P 
28 

Fig. 10. M,, for the 3 mode waveguM of 
Figs. 8 and 9. This c&-w is generated by taking 
the running sun of points Fran Figs. 8 and 9. 
Curves marked Ah-1,3,5 correspond to beam bursts 
ocurring every rf cycle, every third cycle, and 
every fifth cycle respactiw?ly. The solid and 
dotted curves have the same meaning as in Fig. 8. 


