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BEAM INSTABILITIES IN CIRCUIAR ACCELERATOR? 

E.D. Courant 
Brookhaven National Laboratory, Upton, L.I., N.Y. 

and 
Yale University, New Raven, Confiecticut 

I. Introduction 

The particles in circular accelerators must 
make between hundreds and millions of revolutions 
in the acceleration process. The accelerator must 
therefore be designed so that the orbits are sta- 
ble, both in transverse and longitudinal phase 
space. Traditionally fields in accelerators have 
been designed so that the motions of a single par- 
ticle in the designed electromagnetic field would 
be stable and lead to the desired energy. It was 
soon appreciated, however, that this is not suffi- 
cient: actual hardware never conforms exactly to 
an ideal design, and one has to worry about the 
effects of deviations of the field from the ideal 
- whether caused by magnet misalignments, construc- 
tional tolerances, or radiofrequency noise - on 
the stability of the particle motions. It was 
found that the effects of such errors could be min- 
imized, but not eliminated, by designing the orbit 
parameters so that the frequencies of betatron os- 
cillations were as far as possible from the inte- 
gral and half-integral resonance values 

u=k 
v=k++ 

where w is the ratio of betatron oscillation fre- 
quency to revolution frequency. In the vicinity 
of each resonance there is a “stop band", i.e. a 
range of parameters for which the motion is un- 
stable; the width of the stop band depends on the 
magnitude of the field gradient errors. By avoid- 
ing the resonances and building and erecting the 
machine with reasonably close tolerances, one can, 
and does, ensure that the particles remain in sta- 
ble orbits close to the ideal ones. The reso- 
nances are avoided by designing the magnetic field 
so that the operating point lies close to v=kf%. 
Stability should then be maintained as long as ex- 
traneous fields, caused by sources not incorporated 
in the design, change v by less than k. 

Such extraneous fields may be caused by var- 
iations in magnet properties (especially at the 
low fields of injection and at saturation). Such 
errors can be compensated by poleface windings or 
multipole lenses. But there is another "extrane- 
ous" field, namely the field generated by the beam 
itself. In recent years the beam intensity of 
large proton accelerators has been brought up to 
the order of 100 milliamperes of circulating beam, 
and this can seriously alter the forces felt by 
the particle. Not only can these space-charge 
forces alter the value of v until it is shifted to 
a resonance, but several modes of plasma oscilla- 
tions can occur which may have exponentially grow- 
ing amplitudes. 

* Work done under the auspices of the U.S. AEC. 

II. Space-Charge Detuning 

The space-charge detuning is easily calcu- 
lated for a beam of uniform density having an el- 
liptical cross section. The effect is 

rR 
nv=-L-"- 1 (1-J) nvB b(a fb) B2r 

where N is the number of particles in the beam, 
R is the orbit radius, r. = e2/Mc2 the classical 
electrostatic particle radius, a and b the major 
and minor semi-axes of the elliptical cross sec- 
tion, and B is the bunching factor, i.e. the frac- 
tion of the circumference occupied by the beam. 
The factor 1 - S2 arises from the combination of 
electric repulsion and magnetic attraction between 
the particles: the strength of the latter is E2 
times the former. 

Laslettl has worked out modifications to this 
formula arising from the image fields generated in 
the walls of the vacuum chamber and the poles of 
the magnet. The main effect of these modifications 
is to add terms which depend on the chamber dimen- 
sions rather than the beam dimensions, and which 
decrease with increasing energy only as l/g2r 
rather than 1/S2y3. Therefore the Laslett correc- 
tions are mainly of importance when the particle 
energy is relativistic. 

The formula (1) predicts the shift in fre- 
quency of incoherent oscillations, i.e. of oscil- 
lations of individual particles about the center 
of the beam. Instability may be expected to arise 
when the frequency is shifted to the nearest "stop 
band", i.e. to the nearest half-integral value. 
In addition, there is a shift in the frequency of 
coherent oscillations, i.e. oscillations of the 
center of the beam. These will cause beam blowup 
only if the shifted frequency is integral. 
Laslettl has derived expressions for the coherent 
frequency shift; these depend only on the chamber 
and gap dimensions and not on the beam dimension; 
the shift goes with energy about as l/S2v. Thus, 
coherent frequency shifts are small compared to 
incoherent ones at low energies, but become com- 
parable at relativistic energies. 

Using these equations we can estimate "space- 
charge limits" for existing and projected acceler- 
ators. These will, of course, depend on the as- 
sumed beam dimensions and bunching factors. For 
the Brookhaven AGS we know that a fi: 3.0 cm, 
b NN 1.5 cm, bunching factor w l/5 (shortly after 
injection 

1; 
we have accelerated as many as 

1.4 x 101 particles. For this beam we compute 
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(with R = 128 m, v = 8.75, B2y = 0.1) 

Avt0.75, 

three times the supposed limit! 

The explanation for this discrepancy may be: 

(a) The bunching factor equals l/5 only during 
a few revolutions; the average value around injec- 
tion time is more nearly twice that. 

(b) A calculation by L. Smith2 indicates that 
the actual frequency shift of the particles in a 
beam is effectively only half that given by (l), 
largely because the restoring force constant is 
modulated by the oscillations in the beam cross 
section. While his calculation is not rigorous, 
the experimental result may be taken to support it, 

III. Plasma Effects 

The first plasma instability to be observed 
in particle accelerators was the "negative-mass" 
longitudinal instability.3-5 Here a beam of par- 
ticles circulates in an accelerator magnet at an 
energy above the transition energy, so that the 
revolution frequency in the given field is a 
decreasing function of energy. This feature is 
called "negative mass" because it means that if a 
particle receives a forward force its angular ac- 
celeration is backward. Under these conditions, 
the space-charge repulsion between particles can 
cause exponentially growing fluctuations in the 
beam density. To see this qualitatively, consider 
just two particles. Their repulsion causes the 
forward one to receive a forward force, and there- 
fore to slow down azimuthally; the rear particle 
thus comes closer to it, and the forces become 
stronger. 

Analysis3-' shows that this unstable growth 
of fluctuations is inhibited by Landau damping 
arising from an energy spread in the beam. The 
criterion for stability turns out to be 

2rl RNfei y2 
(1 + 2 In (2) 

for a beam of radius a in a circular vacuum 
chamber of radius b. The negative sign signifies 
that af/aE must be negative for this instability 
to occur. 

This instability has been observed experimen- 
tally in numerous accelerators, includin 

9 
the 

Cosmotron,6 the MLJRA 50-MeV accelerator, and the 
"Saturne" synchrotron at Sac1ay.S The agreement 
with theory is reasonably good in most cases. 
However, at MURA7 it was found that a similar in- 
stability can arise at injection, which is well 
below transition energy, i.e. with af/aE positive, 
where the negative-mass theory predicts stability. 
Furthermore, coherent transverse oscillations were 
observed to occur with increasing amplitude in the 
MURA accelerator, 7 in the Cosmotron,p and in the 
Stanford electron storage rings. 

Theories of these effects have been formulated 
by Neil and Sessle&O for the longitudinal insta- 
bility and by Laslett, Neil and Sesslerll for the 
transverse instability. In both cases, a coherent 
disturbance in the beam induces image charges and 
currents in the wall of the vacuum chamber, which 
in turn generate fields that exert forces on the 
beam. Because of the finite resistivity of the 
walls, these forces are shifted in phase with res- 
pect to the disturbance in the beam. For those 
Fourier components which correspond to waves of 
field traveling in the direction of the particles 
but slower than the particles, the phase difference 
is of such a sign as to enhance the disturbance of 
the beam and therefore lead to instability. 

These instabilities are again suppressed by 
Landau damping caused by spreads in the energy or 
the intrinsic oscillation frequency of the parti- 
cles in the beam. In the case of the longitudinal 
resistive instability, the criterion for stability 
turns out to be very nearly the same as (2) (with 
the sign of af/aE reversed), except for a factor 
that depends on the form of the distribution in 
energy and, very weakly, on the resistivity of the 
wall material. This case will be discussed in 
more detail by R.L. Pease at this conference.12 

A simplified analysis of the transverse resis- 
tive instability may be given as follows: Suppose 
we have an ensemble of N particles, the kth one of 
which has an intrinsic oscillation frequency &Sa 
(0 = frequency of revolution, assumed the same for 
all particles). Because of the interaction between 
the particles and the walls, we look for a normal 
mode in which all particles oscillate with the same 
frequency v,n, and attempt to find the conditions 
for which v, is real; these correspond to the 
threshold for instability, Let the transverse mo- 
tion of the kth particle be 

Zk = 6, e 
i(vont +tpk) 

(3) 

and consider a mode such that the phases vk are 
correlated so that the overall dipole moment is of 
the form 

&=k =eNg e i(n8 -Wt) 
(4) 

w=(n-wo)i2 . 

Laslett, Neil and Sesslerll have computed the 
transverse fields arising from (4); they are such 
as to produce a force field 

F = e(E -SB) = e2N 5 (U +Jf V) ei(ne -Wt) (5) 

where U and V are nearly independent of n but de- 
pend on the dimensions of the beam and vacuum cham- 
ber; V is also proportional to the square root of 
the resistivity of the wall material. 
J1'7;; 

The sign of 
is such that its real part is positive; thus 

the imaginary part has the same sign as LU. Usually 
v << u. 

The force equation on the kth particle then 
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-7- 
MY’ Gk + u;Q’ Zk> = e2(U +J$ VI $ z r (6) 

Since we are considering a normal mode with fre- 
quency van, we have i'k = - v; fi2 zk. We divide by 
6J; - "5) and sum over all particles k: 

My cl2 c z 
k k 

= e2(U + (7) 

Replacing the sum by an integral over the distri- 
bution f(v) of the intrinsic frequency of the par- 
ticles (which may be taken as normalized to unity) 
we obtain the dispersion relation 

2 

u :;i" = Ne 

2 - f(v) dv 

v2 - uf 
(8) 

We try to solve for a v. with positive real part. 
If the solution has a negative imaginary part, we 
have instability; a positive imaginary part gives 
stability. 

It can be shown now that instability occurs 
only if u) is positive (i.e. n > vo), and if N ex- 
ceeds a certain threshold which depends on the 
width of the distribution f(v) and on U, but only 
very weakly on V. On the other hand the rate of 
growth, when the threshold is exceeded, is pro- 
portional to V. 

In the case of a bunched beam, many different 
Fourier components n are present. For a sharply 
bunched beam one can carry out an analysis similar 
to the above, and it is found that the term corres- 
ponding to U +m V is the sum of the terms from 
the individual Fourier components. The sign of 
the imaginary part then depends on whether v1 [the 
center of the distribution f(u)] lies in the lower 
or upper half of the interval between two integers. 
Instability can then arise only in the latter case, 
i.e. when 

k+%<vl<k 

where k is some integer. 

This conclusion has not yet been tested exper- 
imentally, since all accelerators where this effect 
has been observed happen to have vl lying just be- 
low the nearest integer. The CERN proton synchro- 
tron (ul M e) exhibits a transverse coherent in- 
stability but that one is attributed to interac- 
tion with ions in the residual gas,13 for which V 
can be shown to have the opposite sign from the 
one for resistive wall effects. 

IV. Instabilities in Colliding Beams 

In the Stanford electron-electron storage 
rings, the transverse resistive instability has 
been observed, and has been suppressed by the ad- 
dition of an octupole magnet which increases the 

effective spread of oscillation frequencies v. 
However, it has been observed that, when a beam in 
one ring is made to collide with the beam in the 
other ring, the less intense beam will grow in 
vertical size, thus reducing the number of particle 
collisions. This growth takes place even if the 
less intense beam contains very few particles, pro- 
vided the other one is intense enough. 

At first sight, the explanation seems to be a 
straightforward extension of the space-charge de- 
tuning theory of Section II. The formula (1) for 
change of frequency has to be modified because the 
magnetic and electric effects add rather than can- 
cel when two beams of particles going in opposite 
directions intersect (in the electron-electron case 
we have equal charges and opposite currents, both 
repelling; for electrons colliding with positrons 
opposite charges attract as do equal currents). 
The intersection takes place only in a small frac- 
tion of the circumference. Thus (1) has to be 
modified by multiplying by the factor 

L?l-LF 
1 - S2 

(9) 

where F is the fraction of the circumference in 
which the beams intersect. Using this approach, 
Amman and Ritsonlb computed limits on the beam in- 
tensity in storage rings. 

However, the beam blowup is observed to occur 
at currents considerably below the Annnan-Ritson 
limit. Therefore more subtle effects than linear 
resonances seem to play a part. 
planation, suggested by Robinson,T~ei~i~~~~s~o~~- 
linear resonances are excited by the strongly non- 
linear form of the field due to a thin ribbon beam. 
Since nonlinear resonances are more closely spaced 
than linear ones, smaller values of Av may be ex- 
pected to lead to blowup. 

This hypothesis was tested by a computer pro- 
gram. The intense ribbon beam is represented by 
an impulse dependent on z, as follows: 

F(z) = D z<b 
= D z/b -b<z<b (10) 
=- D z<-b 

where 2b is the height of the ribbon beam, and D a 
measure of its strength. A particle is followed 
for many revolutions as it undergoes the impulse 
(10) once per revolution and moves in a linear fo- 
cusing field the rest of the time. At regular in- 
tervals the position of the particle in (2,~') 
phase space is graphed. 

Figure 1 shows the plots of particles for 
three sets of initial conditions in a case where 
D is about one fourth as large as the value which 
would cause instability in the linear theory. It 
is seen that with small initial amplitudes the os- 
cillations remain bounded in amplitude, although 
they do not exactly lie on a smooth closed curve 
in phase space. For the largest initial amplitude 
plotted (2.5 times the height of the ribbon) the 
amplitude grows with time, as evidenced by the 
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points that lie at large values of z and z'. The 
growth proceeds without any discernible order, 
somewhat in the manner of oscillations excited by 
noise. This shows that if the initial amplitude 
is large enough - in this case 2.5 times the height 
of the ribbon - the motion is unstable in the long 
run. Whether it would also turn unstable eventu- 
ally for smaller initial amplitudes (after very 
many revolutions) is not known; the lack of closed 
curves in phase space suggests this possibility. 
In any case, damping by synchrotron radiation 
(which was not included in the computations) will 
limit the oscillations to the amplitude reached in 
the characteristic damping time - about 0.1 seconds 
for the Stanford ring. 

If the force (10) is replaced by an error 
function (corresponding to a beam whose charge 
distribution is Gaussian rather than uniform with- 
in sharp limits) we obtain the diagram of Fig, 2. 
Here the oscillations are undoubtedly stable, since 
the points lie on smooth closed curves - at least 
within plotting accuracy. Since the actual beam 
is likely to be more nearly Gaussian than uniform, 
it appears that we still do not have a complete 
picture of the beam blowup. 

However, these calculations are based on a 
grossly simplified model. The computer program 
was modified to provide for motion in the horizon- 
tal as well as vertical direction, with the verti- 
cal force depending on horizontal position and 
vice versa. Furthermore, the exciting ribbon beam 
was given small coherent oscillations of its own. 
In this case (which is not as easily graphed) it 
was found that beam blowup occurred in many cases, 
particularly when the frequency of coherent oscil- 
lations of the strong beam was close to the reso- 
nant frequency of the particles in the blown-up 
beam. Here again the details of the blowup resem- 
bled what one would expect from noise excitation, 
but now the beam was unstable whether the exciting 
beam was taken to be uniform or Gaussian in form. 

The coherent transverse resistive instability 
is also enhanced by the factor (9), as pointed out 
by Sessler.16 He shows that this instability can 
arise from the mutual interaction of two intense 
beams, and is most dangerous when their intrinsic 
frequencies of oscillations are close together. 

Successful operation of the Stanford electron 
storage rings has now been achieved, as will be 
reported at this conference by B. Gittelman,17 by 
making the w-values of the two rings different to 
inhibit the two-beam coherent instability; in- 
creasing the vertical size of the beams slightly 
so as to reduce the Amman-Ritson detuning effect 
and the nonlinear blowup, and inserting nonlinear 
lenses to inhibit the coherent single-beam insta- 
bility. Extrapolation of present theories indi- 
cates that the projected 3-BeV electron-positron 
storage rings should work stably at the design in- 
tensity of about 1 ampere circulating per beam. 

One may ask how these results apply to large 
proton storage rings such as the ones now being 
projected at CERN. Here the Amman-Ritson detuning 

is very much smaller than for the electron or posi- 
tron rings (Aw 4 O.OOl), both because of the higher 
energy and because the beam cross sections are 
larger. However, in the electron rings damping 
from synchrotron radiation helps limit the ampli- 
tudes; in the proton rings this effect is absent, 
and stability has to be maintained for hours rather 
than seconds. Computations are practical for at 
most of the order of one million beam intersections, 
corresponding to about one second. Such computa- 
tions were performed; they show the amplitude in- 
creasing by less than one part in a thousand in one 
second due to the nonlinear resonance effect. This 
makes it very likely that no appreciable blowup due 
to this cause will occur even for very long storage 
times. 
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Figure 1. Phase-space diagram for particles traversing beam with sharp 
boundaries at z = f 1, followed for 2000 turns. Dots - initial 
amplitude 1.5; triangles - initial amplitude 2.0; squares - 
initial amplitude 2.5 
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Figure 2. Same as Fig. 1, but with beam of Gaussian shape, same intensity 
and central density as in Fig. 1. Squares - initial amplitude 2.5; 
+'s - initial amplitude 3.0; X's - initial amplitude 3.5. 


