© 1965 |EEE. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works must be obtained from the |IEEE.

1965 ZUCKER, ET AL: AN ACCELERATOR FOR TSOTOPE CONVERSION - THE RECYCLE ACCELERATOR 479

AN ACCELERATOR FOR ISOTOPE CONVERSION - THE RECYCLE ACCELERATOR

M. S. Zucker, M. Steinberg and B. Manowitz
Brookhaven National Laboratory
Upton, L.I., New York

Summary. The nature of charged particle -
complex nuclei reaction cross sections suggests
an isotope conversion accelerator in which a
circulating beam kept at constant energy re-
peatedly traverses a thin target. Statistical
deviations in target energy loss and emergent
direction induce betatron and synchroetron
oscillations. These limit the number of tra-
versals before particle loss, but to useable
values. However, the requirements of storage
ring injection may reduce the advantage of this
accelerator over conventional types.

The cross section for a charged particle -
complex nucleus reaction taking place is appreci-
able only if the incoming particle (p) has an
energy of the order of the repulsive potential
between the incoming particle and the target
nucleus (t), the so-called Coulomb barrier, given

2
by E_ = ‘ 3 =
y E, (1/4’Teo)Zpth_ /R, R (Rp+Rt)

- 1/3,, 1/3 -15
= RO(Ap +At ), RO ~ (1.440.1)%10 "Tm,

where Rp.t’zp.t

charge numbers.
The cross sections for reactions are pre-

dicted fairly well by two complementary theories.

The continuum theory predicts a cross sectioi

S . PR (L-U/E), B, > E; ~ 0,

E, « E , where E

b c

are the respective radii and

o)
- cont.

b is the bombarding energy and

U= ER/RH), E = E (com.) = (1’12/2mp{2)
R,Eb(lab.). For Eb “’Ec’ O ont.
analytic representation but has a smooth transi-
tion between the other two limiting forms. The
compound nucleus theory predicts a cross section
made up of a sum of Lorentzian resonances*with
resonant energies E; somewhat above the energy
at which the particle reaction becomes energeti-
cally possible.

5 - V'iA.l/r(E‘Ei>2+(r/2>2],

has no simple

comp . /
where E; is the i th resonant energy. For
charged particle bombardment of complex nuclei
at (10 < Ep < 100) MeV, T'/2 ~ (0.1-0.15)Ey. With
the nuclear radius as an adjustable parameter,

Ceont willrepresent essentially an average of

Tcomp. Figures 1 and 5 are classic and typical

examples of the nature of p and g reactions on
complex nuclei. The cross sections are seen to
have peak values of the order of 1 b and are
broad enough to be fairly constant at the peak
value over an energy range E; + 0.5 MeV. Fig. 5
illustrates the possibility of cbtaining a given
nuclide in more than one way.

Thinking of the accelerator as a machine
for converting a given isotope into another the
question arises, as with all machines, as to

what the maximum attainable yield is per energy
input. If the charged particle reaction is the
final desired result, the maximum yield will
occur when the bombarding energy corresponds to
the peak value of the cross section for the par-
ticular reaction. The absolute minimum energy
which can be expended is the energy of Coulomb
interaction that is required to pass the beam
through the target at an energy corresponding to
the resonance energy. Letting R be the reaction
rate (1/cm®-sec); ny, no. of target nuclei (1/cmd);
¢, flux of incident particles (1/cm?-sec); o, pesk
value of the cross section for the reaction (cm2);
P, power input of the target (W/cmZ-sec); Wa,
weight of target atoms (g/cmz); (dE/dx), specific
energy loss at ~ Ep I/ (g/em?)); A, at. we. (g);
and L, Avogadro's no., R = nagg, P = Wa(dE/dx)¥®

= ny(A/L) (dE/dx)g; (R/P) = g(L/A) (dE/dx) 1

While this seems like a rather unrealistic
criterion to measure the performance of a machine
by inasmuch as it neglects the acceleration
energy, ion source energy, etc., considering it
led to the following machine concept, termed the
recycle accelerator, illustrated in Figure 3.
Neglecting for the moment the details of in-
jection, pulsed beam at emergy E; + AE/2 is put
into a storage ring intercepted by a target of
thickness AE < /2. After passing through the
target, the beam enters an acceleration station
which restores AE to the surviving particles
(the vast majority, by a factor

- Y 2
A/(Ue/an) ~ (10 13 cm2/10 24 9

em”) = 107:1,
where 0, and 0, are typical atomic and nuclear
interaction cross sections). These then pro-
cede in orbit until they intercept the target
again. A particle recycling N times will dis-
sipate an amount of energy NAE (supplied by the
radio frequency accelerating station), which, for
N ~ (10-100) could be comparable or even greater

than Eb.

Coulomb scattering of the charged particle
in the target, rather than a nuclear reaction,
might be expected by the above argument to play
the dominant role in determining the average
number of traversals. In fact, it will be demon-
strated that while the accelerating radio frequen-
cy gap can replace the mean energy loss in the
target AE, the random angular and energy devia-
tions which cannot be corrected for will eventual-
ly limit the total number of traversals by harm-
fully perturbing the normal betatron and synchro-
tron oscillations. In the following summary of
useful classical Coulomb scattering results,
(Nt,Ne) are the number of target nuclei and
electrons per unit volume, (e,me) are the
electron charge and mass, (p,v,mg) are the
bombarding particle's momentum, velocity, mass;

Ax is the (geometric) target thickness,
(eZy,eZ ) are the target nucleus and particle
charge, (b(max), b(min) are the classical maximum
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and minimum impact parameters, I is the hydrogen
atom ionization potential, ey is the dielectric
constant of free space, ¢ is the speed of light,
(A ’At) is the particle or target nucleon number,
and n.r. stands for '"mon-relativistically'. Then
it is found that the mean square of the angle by
which a particle deviates from its original
direction after passing thgougg Ax is
N NtZt Zp e
(4?60)2 p2 VZ

B = ln(b(max)/b(min)). The projectian of g gn

- 1/l
any plane, @y, has a mean square (By ) = %{B°)
and, to a good approximation, is Gaussian distri-
buted:

2
= {
?(ey)dsy (m{8~y)

The mean energy loss is
N z 2 4

e
_bn  f eN[p
5 i () (B,
(4n€o) v

with a mean square deviation from this value of

%1 2 4

2 8
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BAx,

-

exp -8,°/¢e%)) 8,

2
((8E)™) =~ 9 Zp e NeAx.
(4me )
o
From these may be derived
2 2
Z z
ery  MePe e n.rNe (’E)J_ _ e bt
~ TR o - v E 3
AE pZ Ne Ne mP Eb rnp b
ul my\ AE E
2 .T. b
(m?y = (-§> v (eE/B) "2T2(F2)
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Some useful approximations are:
2v2m 4E
I e
b(max)/b(min)) ~ —————=— - (v/c) fer _I_b_e,
I[1-{v/c)"] mp

where I =~ I Z_, 1 the ionization potential of
hydrogen, Z¢ ~ %A?, and, using m, NIAp(1837 me),
(% /1ae| ~5.5x107 (@ /A,)E, L.
The value of Ej, used will depend somewhat on the
target nucleus, being at least greater than the
Coulomb barrier E.. Since it would seem that the
bombarding energy would probably not be greater
than 4EC, a reasonable value for estimates would
be_the geometric mean between these or Eb = 2E.;
this representative value will be used in sub-
sequent calculations, Figure 2 assumes this in
illustrating how ((82)/-pE) changes with A, for
protons and alpha particles.
To consider the betatron oscillations first
the axial and radial deviations from a point s
on the equilibrium orbit obey equations of motion
given to first order respectively by

(dzz/dsi) -[n(S)/pz(S)]Z:
@®x/as?) = [ (1-n(s)) /02 () T,

which, for ln(s)\ >> 1 can both be written as
@’y = +n(3/p2()y = e(lal /ey,

where n(s) -(p(s)/B)(®B/3¢), p = (p/qB),

q=eZ 5 ¢ + 1, depending upon whether the

particular region is focusing or not (focusing

for axial deviations is defocusing for radial

deviations, vv, B is the magnetic field intensity,

#

y stands for either axial or radial deviation.The
most general solution is y(s) = CBZcosv{q(s)+p,],
with, v,B8(s) and ®(s) functions of the parameters
cf the magnet ring. For simplicity, assume a
circular ring (no straight sections) with 2M mag-
nets whose radial gradients alternate in sign but
are of the same magnitude, with B constant over
the (circular)equilibrium orbit. Then p(s) = r,
\n\ = ng, 2M = 27(r/4), (where 4 is the length of
equilibrium orbit through a magnet), and

%

v o= (r/QL)cosnl[cos(no%L/r)cosh(no Lir)]

n L T no
=@ = oD .
8% () (/M1 + (n_fa) (Wir) sin(re/2)]?
I FL + @ /8) Wilsin(re/n)] ~ /)7,

9(s) & (/1) + (n_/m) (/1) cos(ms /L) = (s/r),

which expressions are valid assuming

the periodicity of B2 is of fairly higher fre-
quency than the argument of the cosine. These

frequencies are in the ratio Q/Ti/no)(ﬁ/r)z
= Q/Tﬁ/ﬂz)(Mz/no) and so even with o ~ (100-300),

this can be the case; similarly the amplitude of
the sin(ms/{) term in B, (no/r)(ﬁ/r)2 = (TQ/A) X
(no/Mz) can be fairly smaller thgn 1, say 0.1 to
0.3, Then y = ym[1+(n0/8)(£/r) sin(ms/4)] x

cos(ks+p ') where vy =C (r/Vv)? is the average
o m 8

amplitude, being modulated so that the amplitgde
never gets larger than Y am 22 ym[1+(n0/8)(L/r) ]

= ymf, with f being a sort of form factor,
qb' = vq6+0(&/r)3, and k R:(no&ﬂflz rz) = (v/r),

Choosing the zero of s so that ¢, is zero,

y =~ yfcosks ’and neglecting the higher frequency
modulation, y = dy/ds = -k YmEsinks. Starting
with y(s) = y (s), suppose that at s = s¢ (the
target position), y' - y'+6,. Then it is readily
shown that y(s) becomes y(sg = yo(s)+(6 /k) x
sink(s-sy), (8,/k) = r8,/V. Since these perturba-
tion always octurs at the same point in the orbit,
they will add coherently to give after N trav-

i &y
= (r/v)(ey)i, where y_ cosks represents the
originally present betatron oscillation. The
number of target traversals a particle makes be-
fore being lost through collission with the beam
pipe will be determined by its betatron oscilla-
tion amplitude becoming so large as to become
comparable with a dimension of the beam pipe.

ersals vy = ymcosks +sink(s~st)§=1(éy)

The above equation leads to the following
physical picture (see Figure 4). Consider an xz
plane in which the overall betatron oscillation
amplitude is a maximum. In that plane the
successive perturbationsof amplitude may be re-
presented as vectors with random azimuthal angles
whose magnitudes are determined by the immediate-
ly preceding value of § given the particle by the
target. The components of the individual pertur-
bations may be taken along any particular
direction (chosen in Figure 5 to be that fer
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which the aperture of the beam pipe is smallest);
these would correspond approximately to the (8y);,
and of course also add up to the magnitude of y
after N traversals. (They would exactly equal
(5y)i if vy, Were zero, as shown in Figure 5,
and the xz plane in question would then be any
such that sink(s-s¢) = £ 1.)

The problem of how many traversals will
be made on the average before loss can be treat-
ed as a problem in random walk with absorbing
barriers®, and readily solved if some reasonable
approximations are made. The (8y); are Gaussian
distributed with respect to the incident particle
direction, but it will be assumed that the distri
bution is Gaussian with respect to the direction
of the equilibrium orbit at the target location.
Then it will be assumed that the Gaussian distri-
bution of the amplitudes (5y)ivca9“be replacsd%
by an appropriate constant value &y = e€{(&y)“)
€ = £ 1 randomly. This replacement is exact if
the absorbing barriers are at infinity,3 so it
will be assumed a reasonable approximation here.

The equilibrium orbit is assumed to pass
through the zero of a y coordinate axis perpendi-
cular to it extending from -a/2 to 4+a/2 where a
is the smallest dimension of the beam pipe.

The interval -a/2 to +a/2 1is divided into
2{(a/2) /%y’ intervals ([w) meaning the greatest
integer in w). Let § = [y/3y] be the' integer
corresponding to the interval y is in and (N(¥))
the expected or mean number of traversals for a
particle "located" at y before it reaches for the
first time the boundary (thus being “absorbed')
at y(max,min) = [ (a/2)/3y] = +a/2. The relation
between (N) for a particle at y and one to either
side of it is (N(¥)) = p{N(F+1) >q(N(7-1))+1,
with (N(y(min))} = (N(y(max))) = 0, where p is
the probability of the particle at § taking its
next step towards y(max), and @ the corresponding
probability for the step to go towards y(min),

Pty = 1. This finite difference equation has as
solutions obeying the above boundary conditions
~ a, ~
a . (G+y)
~ 2
) Gty) 1- (a/p)

NG - = . . pF
Yy q-p (q_‘))l'(q/@)a (%]

Ao
= (%) -V, @TYE.

It is consistant with the approximation
that 8 is distributed symmetrically about the
equilibrium orbit direction rather than the
incident direction to choose the latter solution,
i.e., no bias irrespective of prexious ggyiation.
Thus letting (y/®y) ~ ¥ and ((6y)2> ~2(6y) s

(N) L@yt (a/2)2y_
o @&° (o))

Here y  represents the initial displacement
in the plane where the betatron oscillation has
its greatest amplitude. (An average of (N}

beta
can be made over a known distribution of Yo). Its
maximum value is for y=0, i.e,, a particle start-
ing out on the equilibrium orbit.

This scolution of the random walk in one
dimension is the solution of the real problem
only if the aperture at right angles to the

minimum dimension which y was chosen to repre-
sent is infinite. This is because even if
deviations in cne direction are completely
independent of those in the other direction
perpendicular to it, the two random walks are
coupled in the sense that terminating one
automatically ends the other. The (N} found

is thus conditional on the other walk not having
ended. An exact treatment of the problem would
require consideration of the shape of the absorb-
ing barrier. One expects, however, the above
solution to be a reasonable approximately if it
is for the minimum aperture and the other dimen-
sion is several times larger. Thus for a parti-
cle starting out on the equilibrum orbit

o) (a/n)?
( G beta\)max Q12?8r> B

This function is plotted in Figure 6 assum-
ing (a/r) =0.125, i.e., 12.5 cm for an equilibrium
orbit radius of 1 m, and Ep = 2E,, for protons
and alpha particles, and for assumed target thick-
nesses of 0.1 and 0.5 MeV. These latter values
are smaller than allowed by (I'/2), being limited
by the likely maximum acceleration voltage per
turn which can be achieved in practice, bearing
in mind that the target loss must be made up
completely before the particle enters into the
magnetic field again, if the particle is not to
receive too large a perturbation.

To consider the effect of synchrotron
oscillations: assume the particle passes through
the target lpsing an average energy AE with vari-
ance ((6E)2)5. With the accelerator gap in close
proximity to the target, the particle will arrive
at the gap with the same phase as if there were
no energy loss variance. The second time around,
however, there will be a phase error E=¢~yg, and
the non-synchronous ¢ will oscillate about the
synchronous g according to

(8, /e, Ty @ @/at”y - (qv /20 (sine-sing)) = O,

- - 2 -1
I A IR L et R O

with E_, . the synchronous orbit energy and
angular fréquency, ¢ the momentum compaction,
defined below, vg = (Eg cz)/ c?, If £ is
small, then the above becomes (d2§/dt2)+{f§ = 0,
(L = —quhuézrcosWS/ZﬂEs; § = £ cos(¥, choosing
t=0 appropriately. Causing the particle to
deviate impulsively from Eg by 5E, Yill change
(do/dt) = (di/dt) by an amount &(dZ/dt) '

= hy'8E/Eg resulting in a change of ampl%t?de
for & given by 5(d§/dt)/{), in a manner similar
to the previous calculation. After N traversals

[l

N
S5y B9, T SINQ(E-t) e T/ELDY  (OE)
y i=1,N
= sinQ(t-tt)Z (69) .-
i=1,N

This can be considered a random walk of the vari-
able @ with absorbing boundaries at the limits of
phase stability. letting the acceptable limits be



482 TEEE TRANSACTIONS ON NUCLEAR SCIENCE

¥g * AP, then as in the previous calculation, the
average number of traversals before the particle
is lost is

<N>synch.,cp ~ [(AQ)Z - (¢5'¢S)2]/<(6¢)2>,

where ((s9)°) = (hugf/fﬁs)2<(65)2) = 2(hugF/aES>2x
(me/mp)EbAE/B, E = Eb. Using AE = qusian,

2 -1 -1
[h<N>synch.,¢/(A¢) ]max = (4™ (mp/me)Bcot@ST

The basic requirement that AE = qVsing; means
that ¢g cannot be made arbitrarily small (as the
above relation implies would be desirable) since
a burden is placed on the accelerating gap to
support a correspondingly increased V_. With
present technique, Vysingg = (O.S-l,OT MeV/turn
is probably the maximum reasonable. In Figure 7
it has been assumed that ¢g = 7/4 (this accelera-
tor is always operating below the transition
energy); the result is independent of AE because
of the implicit approximation made above that the
energy gained per turn remains qVy,singg even as

£l increases. The effect of synchrotron
oscillations on the radial excursion can be also
calculated similarly, starting with the definition
of o

(6r/r) = o "(sp/p) "Fr o N (BE/2E),
() ~ /208 2 ().
Then <N>synch. r = [bz'(ér)oz]/((ér)z), where b

)

2 2 synch.,r max
= 2(b/r)"a (Ey/6E) (mp/m )B. It is easily seen that

<N>synch.,r i <N>synch.,tp
either of the latter dominate the particle loss
process. It can be seen, however, that these are
large enough so that isotope conversion would
become greatly enhanced compared to a convention-
al"single-pass”accelerator by a factor N, (or
N/2 considering the injector represents a

capital investment comparable to the recycle
accelerator).

is the radial aperture, and so ((N)

or (N)beta so that

The above calculations for (N) were carried
out as though the processes were independent of
one another. Even if they were, just as in the
case of the two dimensional random walk, dis-
cussed before, the (N) for the whole process
must be less than that calculated separately
for any of the contributing processes. It is
reasonable though to take the smallest value,
particularly if appreciably smaller, as a reason-
able approximation. As seen in Figures 6 and 7,
taking reasonable values for v, h, and (A¢)2
(say 8.75, 1, 0.5), usually gives (N) >> 1.

In order for the full potential of the
recycle accelerator to be realized the injector
would have to deliver a beam with a pulse
repetition frequency ug/Zﬂ. Thus single turn
injection is ruled out.

While an initial, injection-caused betatron
oscillation might cause the inflector septum to
be missed the first few cycles, there is no
net acceleration per cycle, thus no damping which
would allow traversals after the initial few to

miss the septum altogether as in some convention-
al accelerators., Moreover, the high n value
counted upon to increase (N)beta works against

this injection possibility. The conventional
storage ring injection scheme has a decelerat-
ing gap with a frequency varying periodically
(Figure 3) so that the equilibrium orbit goes
from r to r-dr adiabatically (assumes injection
from outside the ring). One might think the
same effect would result if the accelerating

gap had V varied similarly from (AE/gsingg) to
(AE-8)/qsingg, causing a given particle to tend
to spiral inward. In either case, in view of
the sensitivity exhibited to phase error induced
by a 8E, these last three methods could only
work as compromises which would result in the
injection efficiency being appreciably less than
unity. No calculations of injection efficiencies
have been made yet however.

In conclusion it can be seen that provid-
ing injection losses do not nullify the gains
obtained by recycling of the bombarding particles
through the target there may be an appreciably
greater isotope yield per capital investment and
operating cost if the recycle accelerator concept
is employed, as (N} can be a fairly large
compared to unity.

We would like to thank Drs. J. W. Bittner
and E. D. Courant for enlightening discussions.
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