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Introduection

Achromatic deflection systems have become
increasingly pcpular in recent years, particularly
to enhance the versatility of medium-energy elec-
tron linear accelerators. With the aid of suit-
ably located slits, the pass-band of a well
designed system can be varied from C.1% or better
to 10%. The key element in these systems is
usually a uniferm-field wedge magnet which relies
on rotated edges to obtain transverse focusing
and, at the same time, to decrease the usual
radial focusing. The design of such magnets is
complicated by the effect of the fringe fields.
These fields are usually taken into account by
assuming thas the field extends a certain distance
from the actual edge and drops sharply to zero.
This procedure has been found to work very well
for calculation of the radial motion. However,
until recently no good approximatior has been
evailable for predicting the motion transverse to
the median plane. The fringe effect is more
serious if one desires a small high-field magnet
to reduce tke cost, or a large gap, or both. In
extreme cases the computed transverse focal length
may be in errcr by 20-30% if one assumes that the
transverse deflection occurs at the real edges of
the magnet.

We assume here that the entrance and exit
frirge fields may be replaced by suitably located
thin lenses for the purpose of calculati the
transverse focusing. Recent work by Enge™ has
given a strong impetus to the use of this method.
Our approach differs from that of Enge in that the
thin lens assumptilion is employed in a straight-
forwvard geometrical manner.

Geometry

Figures 1 and 2 shcw the geometry and define
mest of the quantities used in the equations. We
ccnsider cnly magnets with mirror symmetry about
the median plane and with pole edges perpendicular
to that plane. All linear dimensions are measured
in units of the central bending radius p. Sub-
scripts 1 and 2 indicate quantities for the en-
trance and exit fields, respectively. The magnet
gap is g units; o is the total deflection angle;

R is the rotation of the pole edge from the normal
to the trajectory at infinity. Following common
praczice, we define B so that it is positive for
positive transverse focusing. Object and image
digtances are p and g, respectively.

The effective field boundary is hg/cos8
beyond the pcle, zs shown in Fig. 2. The para-
meter h is about 0.6 to 0.8 fcr most cases and can
be determined for a given case by integration of
the fringe Tield or estimated from curves given by
Engeg.
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The distance between the thin lens used for
transverse focusing and the effective field
boundary is k gaps when measured normal to the
pole edge. An empirical value® based on several
magnets is k = 0.485 + .01. The particle is
assumed to be deflected by A radians between in-
finity and the thin lens. The correction angle,

A radians, is
A = kg/cosB

The effective angle between the trajectory at the
lens location and the normal to the magnet edge is
therefore B-A. The focal length of each lens,
measured from the lens pesiticn, is given by4

f = cot(B-a)
The net deflection angle between lenses is

@' = o - A - A
1 2

Transverse Formulas

The usual thin lers formula applied to the
entrance edge (see Fig. 2) yields
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The relation for the exit edge is

These equations may be solved for p and then for
2

g .
2
For the case cf a beam of particles entering
parallel to the optic axis, we set p = = and
obtain 1
Al
. fE(fl - a') .
Q7 FFT o T %
2 1

The radial image distance is®

sin ¥ ccs B cos B +p cos(x - B JcospB
1 2 1 2

4 = p sin(e - Bl - 82) - cos(a - 52) cosBl

If the entering beam is parallel to zthe optic
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axis, this simplifies to

_l _ _ " -
. = tan (« Bl) tan 52

Engel showed that the direction of each ray
and the image distance are the same for a real
(extended) fringe field and the eguivalent sharp-
cutoff field. However, there is a slight radial
shift of the input and output trajectory.

Acknowledgment

The concept of replacing a magnet edge by a
suitably located thin lens was first brought to

h— o]

the attention of the authors by Dr. X. L. Brown,
to whom acknowledgment is gratefully given.

ol V]

References

Harald A. Enge, Rev. Sci. Instr. 35, 278
(196L4).

Figure 3 of reference 1.

W.L. Bendel and T.F. Godlove, following paper.
R.M. Sternheimer, Methods of Experimental
Physics (Academic Press, New York, 1963),

Vol. 5, Part B. p. 733.

Reference 4, Eq. L4.2.186.

|
OBJECT

Fig. 1. The geometry used for radial focusing
calculations. The object distance, p, and the

image distance, g, are measured from the corres- ot -
ponding effective field boundaries. All linear e
dimensions are measurad in terms of the central
bending radius p. .
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Fig. 2. The geomeiry used for transverse focusing
calculations. The thin lenses used for transverse
focusing are shown by the vertical dashed lines
separated by &'. The effective fisld boundaries
are shown by the vertical dashed lines separated
by L.




