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Abstract 

A simple model is used to obtain, 
from basic field theory, expressions for 
the equivalent dynamic resistance and 
inductance of non-laminated iron core 
magnets when small amplitude sine waves 
modulate the D.C. magnet excitation. 
The approximations involved when applying 
the model equations to practical magnets 
are discussed. Deviation of calculated 
values from experimental data is of the 
order of 10% when the level of magnet 
excitation is low. Computed values of 
9 and L nay be used for field stability 
and ripple reduction studies. 

1. Experiments Performed 

Experiments were performed to 
measure R and L for different types of 
magnets. The magnets were excited at 
different D.C. levels using a current 
regulated power supply. The output of 
this supply was modulated with a low 
frequency sine wave using an oscillator 
in series with the power supply reference 
voltage (see Fig. 11. 

Results show the basic difference 
between laminated and solid core magnets. 
The curves for the former indicate the 
characteristic behavior of a first order 
R-L circuit: (a) admittance decreasing 
at frequencies higher than a cut-off fre- 

i%yS;A, 
with an assymptotic slope of 

and (b) phase shift approach- 
ing 900 for higher frequencies. 

This is not the case for a typical 
solid core magnet (Fig. 2). The admit- 
tance curves have a slope of much less 
than 20dbjdecade at high frequencies. 
ht any given frequency the admittance is 
less for lower D.C. excitation. The 
phase curves never reach 90° and show an 
oscillatory behavior with an absolute 
minimum which is loner for lower values 
of D.C. excitation. The phase curves 
cross over as the frequency is increased 
and reverse their order with small angles 
exhibited for small D.C. excitation. 
They seen to have a high frequency assym- 
et;;eAof 50 to 700: 
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Figure 3 clearly shows that the 
curves for the unsaturated solid iron 
magnets may be normalized to a universal 
curve, indicating there are common fea- 
tures among magnets of different geo- 
metries. The curves were arbitrarily 
normalized by shifting them, using the 
ratio f/f 

F' 
where f, is a magnet charac- 

teristic requency. 

2. Theoretical Model 

In theory it is possible to calcu- 
late an equivalent magnet resistance from 
the total energy losses, and a magnet 
inductance from the total energy stored 
in the magnetic field. In order to do 
that the fields must be known at every 
point, implying a solution of the Maxwell 
or potential equations subject to the 
required boundary conditions. This is 
a difficult task because: (1) each magnet 
has a complex geometry, and (2) the pre- 
sence of the iron introduces non-line- 
arities in the equations. 

Nevertheless, the fact that the 
admittance curves nay be normalized to 
universal curves leads us to believe 
that a model of simple geometry should 
exist for a wide range of magnets. This 
model would exhibit the same general 
trends of the magnets and would allow us 
to predict, approximately, the dynamic 
response of real magnets. 

The mathematical model chosen is a 
magnet of rectangular cross section, 
extending to infinity in the y and z 
direction as indicated in Fig. 4. Two 
dimensions characterize the model, the 
dimension of the oole face in the 'lx" 
direction, "d", and the height of the 
gap, t*g". 

The solution of Maxwell equations 
in iron is well known. The only modi- 
fication introduced is that we used the 
reversible permeability'of iron instead 
of the normal permeability. The reason 
is that we are interested in the response 
of the magnet when excited by a sinu- 
soidal current superimposed on a constant 
current. 

The calculation of the field in the 
air is simplified by solving the quasi- 
static problem using the scalar potential. 
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This is justified because, at the low 
frequencies involved, the fields have 
practically the same phase in the neigh- 
borhood of the gap. The Laplace equation 
is solved from simplified boundary con- 
ditions obtained from the solution of 
Maxwell equations in the iron. This is 
not rigorous but it seems the simplest 
approximation. The usual assumption 
that the iron surfaces are equipotential, 
used for D.C. calculations, breaks down 
because the high frequency fields concen- 
trate near the corners and the magnetic 
potential difference across the gap is 
much smaller at the point x = 0, than 
at the points x = + d/2. 

The losses in the iron consist of: 
(1) those produced by the eddy currents 
in the iron which may be calculated from 
the solution of Maxwell equations ne- 
glecting end effect due to the gap, and 
(2) those produced by hysteresis while 
the fields trace a minor loop in the 
B-H graph. The hysteresis losses per 
unit volume may be assumed to be pro- 
portional to (A B)= and thus may be 
calculated as the eddy current losses. 

In order to integrate the losses 
over all the iron volume we must not 
have an infinite magnet, and we have 
to assign specific values for the magnet 
dimensions in the z and y directions. 

The losses in the copper conductor 
are assumed equal to the D.C. losses. 
Since the measured increase in resistance 
for laminated magnets is small compared 
with the increase for solid magnets, we 
expect that the increase in copper losses, 
due to skin effect, is small compared 
with the iron losses. 

The energy stored consists of: (1) 
that stored in the iron, which may be 
calculated from the solution of Maxwell 
equations neglecting end effects due to 
the gap, and (2) that stored in the air, 
which may be calculated from the solution 
of the scalar potential equation in the 
gap. 

3. Theoretical Equations 

Using the described model, we 
obtain after long calculations: 

R=Rc+ 2wP.q N" 

6CI= (a + -3-p 
X 

' 8+ 9 

(sinh $ - sin :)+4uY(sinh $ + sin 
(7 1 

(cash + $1 
\ 

+ cos 

L = 4ni?wd$ + 9) 
10" g(k 4 X 

+--+-1 
s ++ 6 

sinh 

cash $ + co5 $ 
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where 
d = 
f = 
ii! = 
P. = 

N = 
R, = 
w = 

Dimension of magnet pole 
Frequency 
Gap dimension 
Length of path of integration 
in the magnet 
Number of turns in two poles 
Coil resistance 
Length of magnet c 
Skin depth =m 
Steinmetz hysteresis 
coefficient 
Differential permeability 
Resistivity 

These expressions include a factor 
composed of hyperbolic and circular 
functions of the dimensionless parameters 
d/b. The origin of this factor is the 
field distribution in the iron, due to 
eddy currents. There is also another 
factor in which the dimensionless parame- 
ter g/b appears. This factor comes from 
the application of Ampere's Law, and 
represents the reluctance of the magnetic 
circuit. 

Assymptotic expressions may be 
obtained for low frequencies when 
6 7' d, g, and for higher frequencies 
when b << d, g, 
breaks down). 

(until the model analogy 
At high frequencies the 

time constant r = L/R, varies inversely 
with the frequency. 

4. Application 
To Magnet Calculations 

In practice, the magnet parameters 
de g, ~9 1, may not have a precisely 
defined value as in our model because of 
the different geometries of magnets. 
Judgment must be exercised in assigning 
values to these parameters. 

1. For magnets of more than one 
pair of poles, a multiplying factor equal 
to the number of pairs of poles must be 
applied to both R and L. 

2. For magnets of type C, an ef- 
fective L must be used (Fig. 4). 

3. For magnets of type H, since 
the alternating field is pushed to the 
surfaces, the volume over which there is 
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appreciable field is about twice that 
of a magnet of type C. One way to com- 
pensate for this effect would be to 
consider that this type of magnet is 
equivalent to two magnets of type C with 
d' = d/Z. 

4. Rather than using the parameters 
d, 6, ~9 it may be possible to use the 
area of iron surface (S), and the area 
(A), and perimeter (p) of the pole face. 
This seems logical since at low frequen- 
cies the field covers the whole cross 
sectional area, and at high frequencies 
the field is concentrated in a strip of 
width (6) along the perimeter. Charac- 
teristic distances may be defined as 
d' = 2A/p; w* = p/2; 9.' = S/p; which, 
for long magnets, reduce to d, w, and L. 

5. Also since d has not a definite 
value there is not a definite cut-off 
frequency for L, but rather a combination 
of a large number ofcut-off frequencies. 
Under this condition the cutoff is not as 
sharp, and we may approximate: 

sinh d b + sin d/b _ tanh d/b 
cash d/b + cos d/6 - 

5. Results 

The low frequency assymptotic ex-- 
pression for L provides one way of calcu- 
lating II, from experimental results of one 
magnet if we know the geometrical parame- 
ters w*, d', C*, g*, and the number of 
turns, N, of the tested magnet. Simi- 
larly the other assymptotic expression 
for L provides a way of calculating p, 
once we know U. The Steinmetz coeffi- 
cient may then be calculated from the 
high frequency assymptotic expression 
for R. 

We should expect to obtain a very 
low value for the reversible permeability, 
U, compared with the normal permeability. 
Values published by Bozarthaindicate that 
25 =c CL < 60. Published values for the 
other iron parameters are:-e 
10 x lo-sncm < 4 < 60 x 10 Qcm for the 
resistivity, f , and .0004 < N < .002 ,foz 
the Steinmetz hysteresis coefficient. 

Calculations were made only for low 
values of D.C. so that the magnet is far 
from saturation. Then it was expected 
that the calculated set of u, p , 1, would 
approximate the experimental values of 
the other three magnets. Results from 
the experimental data for the y-inch 
clearing magnet (Fig. 5) gives the fol- 
lowing set of values: 
u = 75: = 70 x lo-e?cm: II = .0018. 
Using<this set, calculations were made 
with the theoretical equations 1 and 2. 
The results shown in Figures 5 to 8 

indicate the sane trends as the experi- 
mental data. Deviation between theoreti- 
cal and experimental values are of the 
order of 10%. 

6. Discussion of Results 

Figure 8 shows the result for a 
bubble chamber magnet which has a very 
complicated shape, much different than 
our model. Nevertheless, the deviation 
of experimental data from the theoreti- 
cal values is not great. In this case it 
is apparent that the deviation follows an 
oscillating pattern. A similar pattern, 
but of smaller amplitude, can be found in 
the experimental data for the other three 
magnets. A possible explanation is that 
the geometrical parameter d' has not a 
definite value, as assumed in our theory. 
Then the R and L would be obtained from 
a summation of similar terms, each with 
a different d', as required from the 
magnet shape. Obviously, each term in 
the summation would have a different cut- 
off frequency, and the curves would ap- 
pear to have an oscillatory pattern. The 
approximation in the previous comment, 
Section 4-5, gives the average of these 
oscillations. 

A common feature of the phase plots 
is the assymptotic behavior at high fre- 
quencies. From the equations it is seen 
that if for some magnets 

1 + A/kg 1 1 
1+4Un 

then the phase approaches 45'. The devi- 
ation from this for any magnet is deter- 
mined by the ratio P./g. 

The high value of the resistivity 
used can be traced back, in part, to the 
simplified boundary condition assumed to 
hold between the iron pole and air gap. 

At high excitation the permeability 
is reduced, and the relative value of the 
energy stored in the iron increases as 
compared with that stored in the gap. 
This increases the importance of the iron 
shape, and a new model must be used in 
the analysis. Nevertheless, general 
trends may be predicted from the low ex- 
citation analysis using the assymptotic 
expressions: 

1. The low frequency inductance 
should decrease since u is reduced. 

2. Since the iron, as mentioned 
before, is of greater importance, the 
dimension d’ should be increased because 
normally the iron cross section is larger 
than the gap cross section. This implies 
that the inductance cut-off frequency 
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determined by the ratio d'/6, will be 3. 
smaller than expected, and the high fre- 

Calculate the R and L for the 

quency inductance also decreases. 
equivalent C magnetsfrom formulas 1 and 2 
as indicated in Section 4-5. 

3. The low frequency resistance 
does not change. 

4. Calculate the R and L of the 
magnet from steps 1 and 3. 

4. The high frequency resistance 
is reduced by a reduction in I.r. 
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Then we conclude that the behavior 
of non-laminated iron core magnets, as 
the exciting current frequency increases 
up to 500 cps, is explained by the pene- 
tration of fields in the iron core and is 
independent, up to a first approximation, 
of the field penetration in the copper 
conductors. 

At higher frequencies, as the skin 
depth approaches zero, the fields are 
driven out of the iron core and we should 
expect that leakage flux and copper con- 
ductors play a more important role. 

DC 
REF POWER 

m 

” 

0% SW ii 

NT 

I 

'I' 

For the types of iron normally used 
for D.C. electro-magnets (low carbon steel) 
the set of values U,Q, 7, should not 
differ much, and the set given in this 
report may be used. It should be remem- 
bered that? is an effective resistance; 
higher than the one normally found in 
tables. 

BLOCK EXClTPlTlON 
oI*GRAM WAVESHAPE 

Figure 1. 

Then the procedure for calculating 
the low excitation R and L for a magnet 
is as follows: 

1. Determine the equivalence of the 
magnet in terms of a number of type C 
magnets as indicated in Section 4-1, 4-2, 
and 4-3. 

2. Determine the effective values 
of d, g, w, 6, N, for the equivalent type 
C magnets as indicated in Section 4-4. 

I I ! 10 1 
‘w f (CPSJ - 

Figure 2. 
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