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Sumnary 

This paper considers resonant coupling cir- 
cuits useful in coupling RF energy to cyclotron 
RF resonators. Two specific circuits are con- 
sidered. In the first circuit, the anode of the 
RF power tube is connected directly to the coup- 
ling loop. In the second, a length of transmis- 
sion line connects the anode to the coupling 
loop. Inductive (loop) coupling is assumed for 
the sake of this presentation, With slight modi- 
fication, the expressions derived apply equally 
well to capacitively coupled circuits. 

Simple Coupling Circuit 

The first type of coupling circuit to be 
considered is that in which the coupling loop is 
connected directly to the anode of the power 
tube. This circuit is shown in Figure 1. The 
fact that the power tube is shown in the grounded 
grid connection is not essential to the following 
discussion. It may be shown that the coupling 
loop and the resonator referred to terminals 
A-B of the coupling loop may be represented by 
the equivalent circuit of Figure 2. In this cir- 
cuit, k is the coupling coefficient of the loop 
and is given by 

K=Va 
I Vdee 11 = 0 

Mee, Rdee, and Cdee are the lumped circuit 
parameters of the resonator referred to the dee. 
These parameters may be determined from the Q 
of the resonator and the RF driving power re- 
quired to produce a given value of dee voltage. 
Ca is the total capacity from anode to ground 
including the inter-electrode capacitance of the 
power tube as well as any externally added anode 
to ground capacity. Va is the anode to ground 
voltage. Ll is the self-inductance of the coup- 
ling loop. Rl is the resistance of the coupling 
circuit which gives rise to energy loss in the 
coupling circuit. 

Zero Power Transfer 

Let us first assume that the coupling cir- 
cuit is lossless and transmits no power to the 
resonator. This assumption leads to a particu- 
larly simple relationship between dee and anode 
voltage which, under certain conditions, is not 
a bad approximation. This simple model also 
gives insight into the two modes in which the 
coupling circuit may operate. After discussing 
the simple model, the more general case will be 
discussed. 

If the coupling circuit is lossless and 
there is no power being transmitted through it 

the equivalent circuit of Figure 2 may be sim- 
plified to the one shown in Figure 3. XCa is 
the capacitive reactance of the anode capacity, 
XL1 is the inductive reactance of the coupling 
loop, and Xdee is the reactance of the resonator 
referred to the coupling loop. This circuit 
has two natural frequencies or modes, one due to 
the resonator and the other due to the loop in- 
ductance and the anode capacitance, Since in 
practical circuits the resonator and coupling 
circuit are not tuned close together and since 
the resonator has a very high Q, the resonator 
mode will be very close to the natural frequency 
of the resonator and the coupling loop mode will 
be very nearly the natural frequency of the coup- 
ling loop and anode capacity. If this coupling 
circuit is to be useful, it must operate in the 
resonator mode in order that kVdee will not be 
vanishingly small. If the circuit is operating 
in the resonator mode, then we have 

jXdee =-jXCa - jXL1 

Va P =- 
kVdee , 

Combining these expressions one obtains 

Va= 
kVdee 

Where fr is the natural frequency of the resona- 
tor and fl, the natural frequency of the coup- 
ling circuit, is given by 

fl = 

2&i 

Equation 1 shows that the ratio of dee to anode 
voltage depends only on the natural frequency 
of the resonator and the natural frequency of 
the coupling circuit. If the coupling circuit 
is tuned above the resonator Va and kVdee are in 
phase. If the coupling circuit is iuned below 
the resonator, Va and kVdee are 180 out of 
phase. 

In order to check the validity of Equation 
1, a loop was placed in a resonator and the ratio 
of Va to kVdee measured for four values of capa- 
city Ca loading the loop. The natural frequen- 
cies fr and fl were also measured and substituted 
in Equation 1 to compute the ratio of Va to kVdee. 
The measured and computed results are presented 
in Table 1. 
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TABLE I 

Summary of Coupling Circuit Test 

Va 
I-I 

Va 
kVdee kVdee 

Ca fl fr (talc.) (meas.) 

500 pf 10.1 14.2 -1.0 1.06 

275 pf 13.0 14.2 -5.2 4.0 

200 pf 15.9 14.2 $4.9 3.52 

100 pf 22.5 14.2 +1.66 1.60 

Table I indicates that Equation 1 is valid 
if the ratio of Va to kVdee does not become too 
large. The discrepancy between observed and 
calculated values is due to the assumption that 
the circuit is lossless and transmits no power. 

To design a coupling circuit using Equation 
1, the self-inductance of the loop Ll must be 
known. Ll depends on the size of the coupling 
loop which in turn depends on the desired value 
of coupling coefficient k. Once the size of 
the loop is fixed, its inductance may be calcu- 
lated. If the loop is longer than l/12 of the 
electromagnetic wave length, the current in the 
loop becomes nonuniform and the inductance be- 
comes a function of frequency becoming very large 
as the loop approaches a quarter wave in length. 
If, however, the loop is less than l/12 wave 
length long, the current distribution is approxi- 
mately uniform and the loop inductance is nearly 
constant and given by - 

Ll = .OO51 [ 2b In (y) + c In (F)]vh (2) 

where a, b, and c are in inches and are given in 
Figure 4. 

A loop with a = l", b = 5.5" and c = 16" was 
constructed and resonated with a 75.2 pf capaci- 
tor at 32.7 MC. The loop inductance is therefore 
.314 microhenries. Computing Ll from the loop 
dimensions and Equation 1 gives .338 microhenries 
For this case the loop was approximately 27 elec- 
trical degrees long. 

Finite Power Transfer 

As was observed in Table 1, the approxima- 
tion leading to 1 is not accurate if the ratio 
Va to kVdee is large. If power is transmitted 
through the coupling system but losses in the 
coupling system are neglected, the equivalent 
circuit is as illustrated in Figure 5a. 

The phasor diagram associated with this cir- 
cuit is shown in Figure 5b. I1 the peak RF cur- 
rent flowing in the loop has two phase quadrature 
components Ii and Ir. Ii is in phase quadrature 
with Va and represents the current flowing in Ca. 
Ir is in phase with Va and IrVa represents power 
being transferred to the resonator. Ii and Ir 
are given by 

where Pt is the power being transferred to the 
resonator. The phase angle CY between Va and Vl 
is then given by 

(Y = tan -1 (2p~a~a) 

the modulus of I1 is then 

1111 = [I%/ 2 + 1% j 2 ]1'2 
L 

and multiplying by XL1 Vl is then 

IV11 = IVal 
[ 
1% 

and 
I- 

\kVdeel = ba[2+(Vl\2- 2 lVa[ 1~11 1 1 112 
cos CY (3) 

The phase shift B between Va and kVdee is 

B = sin -1[&[($&~+(~)2~2 sin+41 

Equations 3 and 4 describe the relationship 
between Va and kVdee more accurately than Equa- 
tion 1. Unlike Equation 1 the phase shift be- 
tween Va and kVdee is always finite if Pt is 
greater than zero. As Pt approaches zero kVdee 
approaches [Va 1 - IV11 which leads to the result 
of Equation 1. 

Phase Shift 

If the power tube is to be operated as a 
self-excited oscillator which takes its drive 
from the resonator then the phase shift is par- 
ticularly important since the relationship be- 
tween the anode voltage and drive voltage is 
critical. Examination of Figure 5b shows that 
the phase shift 8 depends on both (Y and the ratio 
of dee to anode voltage. If rVa/kVdeel< 1 then 
the phase shift depends primarily on r~. For 
practical self-excited oscillators cy must be 
small; therefore, CY may be approximated by 

cy z 2PtXCa = g 

Va2 Ii 

Thus if the phase shift 8 is to be kept close to 
0' or 180° the ratio of resistive to reactive cur- 
rent at the anode must be kept small. 

In the design of a resonant coupling cir- 
cuit for a self-excited oscillator it is desir- 
abl to maintain the ratio Ii/Ir between 7 and 
10. P If the ratio falls below 7, the phase shift 
becomes excessive. If the ratio exceeds 10 
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losses in the coupling circuit due to high cir- 
culating currents become excessive. 

Losses in the coupling circuit are given by 
IlR1/2 provided that Rl is very much less than 
XLl. It is of course necessary to make the peri- 
meter of the coupling loop sufficiently large to 
keep these losses down. 

Resonant 

If the frequency of the resonator changes, 
the simple coupling circuit described above must 
be retuned to maintain a constant ratio of dee 
to anode voltage. Resonant transmission line 
coupling systems allow varing the resonator fre- 
quency over mpre than a two to one range with- 
out retuning. Such systems also make it pos- 
sible to separate the power tube from the 
resonator. 

Zero Power Transfer 

Let us start by assuming a lossless trans- 
mission line with no power transfer. As before, 
this leads to an approximation which is useful 
in many cases. If there is no power transfer, 
the transmission line is terminated on one end 
by the anode capacity Ca and on the other by the 
resonator and loop reactance. This is illu- 
strated in Figure 6. Again we have two coupled 
resonant circuits and two modes. Since in prac- 
tical circuits the two modes are not tuned close 
together and since the resonator is high Q, the 
resonant frequency of the resonator mode is al- 
most exactly the same as the natural frequency 
of the resonator, fr. From the equations for a 
resonant transmission line we have 

sin yll 
va=--..- 
Vb sin y12 (5) 

Where y, the propagation constant of the TEM 
transmission line mode, is given by 

2nf 
Y= - 

d cr c 

c is the velocity of light and sr is the rela- 
tive di-electric constant of the transmission 
line. 11 is computed from the relationship 

20 tan yll = XCa 

Zo is the characteristic impedance of the trans- 
mission line. From a derivation similar to that 
for Equation 1 we obtain 

XL= 
kVdee 

Combining with 5 this becomes 

E.-z 
sin yl 1 

kVdee sin yl2 f XL1 cos y12 (6) 

Equation 6 gives the ratio of dee to anode 
voltage if the anode capacity Ca, the loop in- 
ductance Ll, the line length L and the resona- 
tor frequency fr are given. Unlike the simple 
circuit, it is not possible to establish the 
ratio Va/kVdee as a function of only the two 
natural frequencies of the system. However, 
given line length L anode capacity Ca and the 
two natural frequencies of the system, one may 
calculate XL1 and evaluate Equation 6. Equation 
6 is similar to Equation 1 in that Va/kVdee may 
become infinite and also in that the phaseoshift 
from anode to resonator is either 0 or 180 . 

A check on the validity of Equation 6 was 
made by connecting a capacity loaded transmis- 
sion line to a loop in a resonant cavity. The 
results of this test are summarized in Table II. 

TABLE II 

Computed vs. Calculated Values of Va/kVdee 
for Transmission Line Coupling 

Va Va - - 
kVdee kVdee 

Ca fr yL Ll (talc.) ( mfas . 

500 pf 26.8 79' .5i-Lh .lO .lO 

200 pf 26.8 79O .5ph .23 .21 

100 pf 26.8 79' .5ph .40 .38 

200 pf 14.2 42O .5nh 2.33 2.50 

100 pf 14.2 42O .Sph .79 .80 

Finite Power Transfer 

The more general case in which power is 
transferred through the circuit is give? an 
excellent treatment by K. R. MacKenzie. This 
approach consists of a graphical analysis of the 
transmission line in which the magnitude and 
phase of the forward and backward waves on the 
line are computed by applying the boundary con- 
ditions on the line. This method provides a 
great deal of physical insight. 

Phase Shift 

The phase shift b between Va and Vb is 
given by 

@ = yL + tan -1 

j_ 

1 
tan yll - 2 Zo tan yll Pt 

Va2 1 -1 
i 

1 + tan 
tan yl2 - 2 Zo tan yl2 Pt 

1 

(7) 

Vb2 

Equation 7 is derived from K. R. MacKenzie's 
phasor diagram analysis. If Pt = 0 then the 
phase shift b is either 0 or 180° depending on 
whether L is less than or greater than 1 1' The 
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term 

2z0 tan yl Pt = I resistive 

v2 
I reactive 

introduces phase shift. Thus the ratio of re- 
sistance to reaction currents at each end of the 
line determines the phase shift in the line. In 
order to calculate the total phase shift between 
Va and kVdee one must combine the phase shifts 
given by Equations 4 and 7. 

If phase shifts are to be kept low with- 
out excessive losses in the coupling circuit 
(I re ctive/I resistive) should be in the range 
7-10. f 

Vdae 
I 

Fig. 1. Resonator and Couplhg hop. 

K’Rdes 

Fig. 2. Equivalent CFrcult of Couplimg 
Loop and Resonator. 

if--j--=-jFJ~~ Xd** 

Fig. 3. Equivalent CLrcuit for Zero Pouer Transfer. 

Conclusion 

In starting the design of a resonant coup- 
ling system it is useful to use the approximate 
coupling formulas Equations 1 or 6. In this 
way one may gain an insight into the system with- 
out being burdened by long cumbersome expressions. 
The more exact solutions are useful once a tenta- 
tive coupling system has been established. 
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