Optics Considerations for the PS2

W. Bartmann, M. Benedikt, C. Carli, B. Goddard, S. Hancock, J.M. Jowett, Y. Papaphilippou

26th June, 2007
Content

- Introduction
 - Motivation
 - Requirements for PS2
- Design Considerations
- Longitudinal Aspects
- Layout
- Plain FODO Lattice
- Doublet and Triplet Lattices
- Negative Momentum Compaction (NMC) Modules
- Summary and Outlook
Introduction - Motivation

- Proton Accelerators for the Future (PAF) study – identify upgrade scenario
 - Reliable operation for the LHC (allow ultimate LHC beam)
 - Options for future programs

From: PAF study group, in particular R. Garoby

Proton flux / Beam power

- Linac2
- Linac4
- SPL
- RCPSB
- PSB
- PS
- SPS
- SPS+
- SPS
- LHC / SLHC
- DLHC
- PS2 (PS2+)
- SPL: Superc. Proton Linac (~ 5 GeV)
- SPL': RCPSB injector (0.16 to 0.4-1 GeV)
- RCPSB: Rapid Cycling PSB (0.4-1 to ~ 5 GeV)
- PS2: High Energy PS (~ 5 to 50 GeV – 0.3 Hz)
- PS2+: Superconducting PS (~ 5 to 50 GeV – 0.3 Hz)
- SPS+: Superconducting SPS (50 to 1000 GeV)
- SLHC: “Superluminosity” LHC (up to 10^{35} cm$^{-2}$s$^{-1}$)
- DLHC: “Double energy” LHC (~ 14 TeV)
Introduction – Requirements for PS2

- Replace the ageing PS and improve options for physics
- Integration in existing complex
- Versatile machine:
 - Many different beams (and bunch patterns)
 - Protons and ions (performance if SPL injector ?)
- Transfer operations
 - Injections:
 - H- charge exchange injection for protons (assuming SPL as injector)
 - Fast injection for ions (low magnetic field)
 - Ejections:
 - Fast single turn ejection (e.g. LHC beams)
 - Multiturn ejection (beam cut transversally in ~5 pieces) for SPS fixed target
 - Slow ejection (~1s spill) for PS2 physics
Design Considerations

- Considerations on machine circumference C_{PS2}:
 - PS2 ejection energy: 50 GeV (improve SPS performance)
 - $C_{PS2} \sim 2 C_{PS}$ (no superconducting high field magnets for robust operation)
 - SPS filling (5 turn PS2 ejection) and abort gap: $C_{PS2} \sim C_{SPS}/5 = 2.2 C_{PS}$
 - Analysis of possible bunch patterns required: $C_{PS2} = (15/77) C_{SPS} = 1346.4$ m

- Required performance:
 - LHC scenarios: up to 4.0×10^{11} per LHC bunch (20% reserve for losses), spaced by 25 ns (average line density fixed), normalized rms emittances 3.0μm
 - Fixes (with direct space charge tune shift: 0.2) injection energy: 4 GeV
 - High intensity SPS physics beam with single transfer from PS2 determines aperture

- RF for bunch pattern for LHC options
 - Extrapolation of present PS scheme:
 - Tunable “10 MHz” system and various RF gymnastics involving higher fixed frequency cavities
 - Single ~40 MHz RF system with little tuning for acceleration:
 - Incompatible with ion operation
 - Proton bunch structure implemented at injection with chopping of SPL
Longitudinal Aspects

- The increase of working range (PS: 1.4 -> 26GeV, PS2: 4 -> 50GeV):
 - Slows down longitudinal motion while increasing acceptances
 - Impacts on RF gymnastics
- Choice of γ_{tr} and the lattice plays a major role:

 ![Graph showing acceptance and adiabaticity penalty functions]

 Acceptance (blue) and adiabaticity (red) penalty functions
 at injection (dashed) and ejection (solid)
 keeping RF Voltages of present PS (thin lines) and doubling gradients (thick lines)

- Search for lattices with imaginary γ_{tr}:
 - Avoid transition crossing
 - Extrapolation of PS scheme: $1/\gamma_{tr}^2 = -.01$ implies a factor 2 longer gymnastics at ejection
Optics Considerations for the PS2

26th June, 2007

Racetrack:
- Integration into existing/planned complex:
 - Beam from Linac4 (close to PSB and PS) & SPL
 - Short transfer to SPS
 - Ions and protons from existing complex
- All transfer channels in one straight
- Minimum number of D suppressors
 - High bending filling factor
 (Required to reach 50GeV)
Plain FODO Lattice

- Conventional Approach:
 - FODO with dispersion suppressors for $D = 0 \text{ m}$ in straights
 - 90° phase advance per cell for injection/ejection equipment
 - 7 cells/straight and 22 cells/arc -> in total 58 cells
 - $Q_H = 14.5$, $Q_V = 14.5$
 - Only complete lattice at present

26th June, 2007

Optics Considerations for the PS2
Doublet and Triplet Lattices

- **Doublet:**
 - Long straight sections
 - Inefficient focusing (high gradients)
 - Put aside at present

- **Triplet:**
 - Long straight sections
 - Small maximum β’s in bending magnets
 - Inefficient focusing (high gradients)
 - Put aside at present
Negative Momentum Compaction (NMC) Modules

- Negative dispersion in bendings needed
- Similar to and inspired from existing modules (e.g. J-PARC, many studies)
- First approach (one module made of three FODO cells):
 - Match regular FODO (no bends in central cell) to given phase advance
 - reduced distance and rematch only central quads to given phase advance (in general three times that of the FODO)

Regular FODO 90°/cell
- zero dispersion at beginning/end

Reduced drift in center, average 90°/cell
- negative dispersion at beginning/end
\[\gamma_{tr} \approx 10 \text{ i} \] (for whole PS2)
Negative Momentum Compaction (NMC) Modules

- Second approach:
 - Dispersion beating excited by “kicks” in bends,
 - Resonant behavior: total phase advance < 2π
 - Improve filling factor: four FODO per module
 - Central drifts could be filled (price: increased momentum compaction)

- Challenges:
 - Filling factor
 - Straights with zero dispersion
Summary and Outlook

- Study on PS2 to replace the ageing PS started (in the frame of more general investigations on CERN complex upgrades)
- Different lattice types investigated
 - FODO type lattice a good candidate and well advanced
 - NMC lattice based on FODO a candidate
 - No transition crossing
 - Challenge: high dipole filling factor, matching to straights with zero dispersion
- Outlook:
 - Complete a lattice based on NMC modules
 - Revise longitudinal gymnastics (momentum compaction acceptable ?)
 - Thorough study of non-linear dynamics and instabilities
 - Foreseen schedule:
 - Completion of PS2 Study: 2010
 - Decision and start of construction: 2012 (?)