Status of the NuMI Neutrino Beam at Fermilab

Robert Zwaska

Fermilab

June 26, 2007
The NuMI Facility

- High-power neutrino beam for oscillation experiments
 - Beam tilted 3.3° down into the earth
- Neutrino beam travels to northern Minnesota
 - 735 km baseline
 - Intense source at Fermilab
 - Oscillated source in Minnesota
- Commissioned in 2004
- Operating since 2005

Near Detector: 980 tons Far Detector: 5400 tons
Protons as Raw Material

- 120 GeV protons from the Main Injector
 - Designed for as many as 4×10^{13} protons/pulse
 - 10 μs pulse every 1.9 s
 - 400 kW design power
- Shared proton capability
 - Antiproton Source
 - MiniBooNE beam
- Possibility to increase power in future
 - Redirect MiniBooNE protons
 - Re-use antiproton machines
The NuMI Beam

“Neutrinos at the Main Injector”
The NuMI Beam

“Neutrinos at the Main Injector”

- 400 kW design average power
- $\sigma \sim 1$ mm
The NuMI Beam

“Neutrinos at the Main Injector”

- 2 interaction length, C target
- Produces π^+, K^+ mesons

- 400 kW design average power
- $\sigma \sim 1$ mm
The NuMI Beam

“Neutrinos at the Main Injector”

- 2 interaction length, C target
- Produces π^+, K^+ mesons

- Target
 - 120 GeV protons
 - From Main Injector

- Target Hall
 - #1 Horns
 - #2 Horns
 - Decay Pipe
 - π^+
 - μ^+
 - Hadron Monitor
 - 10 m
 - 30 m
 - 675 m

- Absorber

- Muon Monitors
 - ν_{μ}
 - 12 m
 - 18 m
 - 210 m

- Rock

- Pulsed focusing horns
- Toroidal magnetic field
- Parabolic inner conductor profile
- Focuses meson momentum band

- 400 kW design average power
- $\sigma \sim 1 \text{ mm}$
The NuMI Beam

“Neutrinos at the Main Injector”

- 2 m diameter
- Roughly decay length for 10 GeV π^+
- Evacuated & cooled

Target

120 GeV protons

From Main Injector

10 m 30 m

Target Hall

Decay Pipe

Absorber

Muon Monitors

Hadron Monitor

- 400 kW design average power
- $\sigma \sim 1$ mm
- Pulsed focusing horns
- Toroidal magnetic field
- Parabolic inner conductor profile
- Focuses meson momentum band
The NuMI Beam
“Neutrinos at the Main Injector”

- Absorbs 160 kW of protons and other hadrons
- Allows high-energy muons to penetrate

Target
120 GeV protons from Main Injector

Target Hall

Decay Pipe

Muon Monitors

Absorber

Hadron Monitor

- 2 m diameter
- Roughly decay length for 10 GeV
- Produces π⁺, K⁺ mesons
- 2 interaction length, C target, Evacuated & cooled
- 400 kW design average power
- σ ~ 1 mm
- Pulsed focusing horns
- Toroidal magnetic field
- Parabolic inner conductor profile
- Focuses meson momentum band
The NuMI Beam

“Neutrinos at the Main Injector”

- 2 m diameter
- Absorbs 160 kW of protons and other hadrons
- 2 interaction lengths
- Roughly decay length for 10 GeV π
- Evacuated & cooled
- Allows high-energy muons to penetrate
- Produces π⁺, K⁺ mesons
- 400 kW design average power
- σ ~ 1 mm
- Pulsed focusing horns
- Toroidal magnetic field
- Parabolic inner conductor profile
- Focuses meson momentum band
- Measure hadron & muon fluxes
- Arrays measure distributions
Variable Energy Neutrino Beam

Low Energy Beam

Proton \rightarrow Target \rightarrow Horn 1 \rightarrow Horn 2

Pions with $p_T = 300$ MeV/c and $\begin{cases} p = 5 \text{ GeV/c} \\ p = 10 \text{ GeV/c} \\ p = 20 \text{ GeV/c} \end{cases}$

Figure courtesy Ž. Pavlović
Variable Energy Neutrino Beam

Low Energy Beam

Pions with
\(p_T = 300 \text{ MeV/c} \) and
\(p = 5 \text{ GeV/c} \)
\(p = 10 \text{ GeV/c} \)
\(p = 20 \text{ GeV/c} \)

High Energy Beam

figure courtesy Ž. Pavlović
Variable Energy Neutrino Beam

Low Energy Beam

Proton \rightarrow \text{Target} \rightarrow \text{Horn 1} \rightarrow \text{Horn 2}

Pions with
\[p_T = 300 \, \text{MeV/c} \] and
\[p = 5 \, \text{GeV/c} \]
\[p = 10 \, \text{GeV/c} \]
\[p = 20 \, \text{GeV/c} \]

Vary the beam energy by sliding the target in/out of the 1st horn.

High Energy Beam

Proton \rightarrow \text{Target} \rightarrow \text{Horn 1} \rightarrow \text{Horn 2}

Figure courtesy Ž. Pavlović
Variable Energy Neutrino Beam

Low Energy Beam

Proton \rightarrow Target \rightarrow Horn 1

Horn 2

MINOS Data

Pions with

\begin{align*}
 p_T &= 300 \text{ MeV/c} \\
 p &= 5 \text{ GeV/c} \\
 p &= 10 \text{ GeV/c} \\
 p &= 20 \text{ GeV/c}
\end{align*}

Vary \nu beam energy by sliding the target in/out of the 1st horn

High Energy Beam

Proton \rightarrow Target \rightarrow Horn 1

Horn 2

\text{figure courtesy Ž. Pavlović}
Achieving a Precision ν Spectrum

- Component placement affects the ν beam
 - Beam monitors detect changes in muon & hadron beams
 - Variation measured spill-to-spill

- Beam based alignment for all major components

- Horn 1 displacements affect pion focusing
Achieving a Precision ν Spectrum

- Component placement affects the ν beam
 - Beam monitors detect changes in muon & hadron beams
 - Variation measured spill-to-spill

- Beam based alignment for all major components

- Horn 1 displacements affect pion focusing
Achieving a Precision ν Spectrum

- Component placement affects the ν beam
 - Beam monitors detect changes in muon & hadron beams
 - Variation measured spill-to-spill

- Beam based alignment for all major components

- Horn 1 displacements affect pion focusing
Achieving a Precision ν Spectrum

- Component placement affects the ν beam
 - Beam monitors detect changes in muon & hadron beams
 - Variation measured spill-to-spill
- Beam based alignment for all major components

- Horn 1 displacements affect pion focusing

![Diagram of beam path and components](image)
Achieving a Precision ν Spectrum

- Component placement affects the ν beam
 - Beam monitors detect changes in muon & hadron beams
 - Variation measured spill-to-spill
- Beam based alignment for all major components

- Horn 1 displacements affect pion focusing

![Diagram showing pion focusing and misalignment effects](image)

Horn 1 Misalignment
- 1mm offset
- 2mm offset
- 3mm offset
- 4mm offset

Energy (GeV)

$ND(\text{offset})/ND(\text{nominal})$
Beam Performance

- Typical beam powers of 180 kW
 - Higher beam powers of ~ 270 kW without antiproton production
- Downtimes due to:
 - Planned shutdowns
 - Component failures
 - Accelerator downtime
Reliability

- Major points of failures are the secondary beam components
 - **Target**
 - First had a water leak repaired, then motion failed
 - Now on second target
 - **Horns**
 - Each has had repairs
- Significant impact upon delivered number of protons
- Inventory of spares in progress
- Repair capability invented, now being augmented
New Beam Records

- 11 batch slip stacking produces $> 4 \times 10^{13}$ protons
 - Exceeds target design intensity
 - Changing to a larger spot size
- Beam power has reached 325 kW
 - Plan to be able to exceed 400 kW for short periods of time
- Expect to integrate $\geq 50\%$ more protons in 2008
 - Requires improvement in loss control in MI and reliability in NuMI
Users

- MINOS – Main Injector Neutrino Oscillation Search
 - Primary user – built concurrently with NuMI
 - 10s of millions of neutrino events
 - Producing world-competitive measurements
 - 10s of millions if neutrinos

- MINERvA experiment starting construction
 - Sited in MINOS Fermilab hall

- NOvA experiment proposed and in planning
 - New detector in northern Minnesota
 - Includes beam upgrades to 700 kW
Conclusion

• The NuMI beam has been in operation over 2 years
 ➢ Beam power is below design, but consistent with expectations
 ➢ Continuing to see improvement via Proton Plan

• Reliability improved for high-power components
 ➢ Had been a significant cost in beam throughput

• Precision beam information used for experiments
 ➢ Car in design and measurement of beam components
 ➢ Verification through monitoring
 ➢ Checked with millions of neutrinos by MINOS
Status of the NuMI
Neutrino Beam at Fermilab

Robert Zwaska
Fermilab

June 26, 2007
Secondary Beam Monitoring

- Spill-to-spill measurements of the Neutrino beam (faster than Near Detector)
Secondary Beam Monitoring

- Spill-to-spill measurements of the Neutrino beam (faster than Near Detector)
Secondary Beam Monitoring

- Spill-to-spill measurements of the Neutrino beam (faster than Near Detector)
Beam-Based Alignment

- Proton beam scanned horizontally across target and protection baffle
 - Also used to locate horns
- Hadron Monitor and the Muon Monitors used to find the edges
Beam-Based Alignment

- Proton beam scanned horizontally across target and protection baffle
 - Also used to locate horns
- Hadron Monitor and the Muon Monitors used to find the edges
 - Measured small (~1.2 mm) offset of target relative to primary beam instrumentation.