TUYC  —  PPHIB: Pulsed Power & High-intensity Beams/Induction Linacs   (26-Jun-07   11:00—12:00)

Chair: D. R. Welch, Voss Scientific, Albuquerque, New Mexico

Paper Title Page
TUYC01 Studies of the Pulse Line Ion Accelerator 852
 
  • W. L. Waldron
  • R. J. Briggs
    SAIC, Alamo, California
  • A. Friedman
    LLNL, Livermore, California
  • E. Henestroza, L. R. Reginato
    LBNL, Berkeley, California
 
  Funding: This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U. S. Department of Energy under Contracts No. DE-AC02-05CH11231 and W-7405-Eng-48.

The Pulse Line Ion Accelerator concept was motivated by the need for an inexpensive way to accelerate intense short pulse heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. A pulse power driver applied to one end of a helical pulse line creates a traveling wave that accelerates and axially confines the heavy ion beam pulse. The concept has been demonstrated with ion beams at modest acceleration gradients. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/m acceleration gradients. This method has the potential to reduce the length of an equivalent induction accelerator by a factor of 6-10 while simplifying the pulsed power systems. The performance of prototype hardware has been limited by high voltage flashover across the vacuum insulator. Bench tests and analysis have led to significantly improved flashover thresholds. Further studies using a variety of experimental configurations are planned.

 
slides icon Slides  
TUYC02 High Gradient Induction Accelerator 857
 
  • G. J. Caporaso
  • D. T. Blackfield, Y.-J. Chen, J. R. Harris, S. A. Hawkins, L. Holmes, S. D. Nelson, A. Paul, B. R. Poole, M. A. Rhodes, S. Sampayan, M. Sanders, S. Sullivan, L. Wang, J. A. Watson
    LLNL, Livermore, California
  • M. L. Krogh
    University of Missouri - Rolla, Rolla, Missouri
  • C. Nunnally
    University of Missouri, Columbia, Columbia, Missouri
  • K. Selenes
    TPL, Albuquerque, NM
 
  Funding: This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Progress in the development of compact induction accelerators employing advanced vacuum insulators and dielectrics will be described. These machines will have average accelerating gradients at least an order of magnitude higher than existing machines and can be used for a variety of applications including flash x-ray radiography and medical treatments. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described.

 
slides icon Slides