TUXC  —  PPHIB: Pulsed Power & High-intensity Beams/Induction Linacs   (26-Jun-07   08:30—10:00)

Chair: K. R. Prestwich, Kenneth R. Prestwich Consulting, Albuquerque, New Mexico

Paper Title Page
TUXC01 Status of DARHT 2nd Axis Accelerator at the Los Alamos National Laboratory 831
 
  • R. D. Scarpetti
  • J. Barraza, C. Ekdahl, E. Jacquez, S. Nath, K. Nielsen, G. J. Seitz
    LANL, Los Alamos, New Mexico
  • F. M. Bieniosek, B. G. Logan
    LBNL, Berkeley, California
  • G. J. Caporaso, Y.-J. Chen
    LLNL, Livermore, California
 
  This presentation will provide a status report on the 2kA, 17MeV, 2-microsecond Dual-Axis Radiographic Hydrotest electron beam accelerator at Los Alamos National Laboratory, and will cover results from the cell refurbishment effort, commissioning experiments on beam transport and stability through the accelerator, and experiments exercising the beam chopper.  
slides icon Slides  
TUXC02 Induction Synchrotron Experiment in the KEK PS 836
 
  • K. Takayama
 
  We report an experimental demonstration of the induction synchrotron*, the concept of which has been proposed as a future accelerator for the second-generation of neutrino factory or hadron collider**. The induction synchrotron supports a super-bunch and a super-bunch permits more charge to be accelerated while observing the constraints of the transverse space-charge limit. By using a newly developed induction acceleration system instead of radio-wave acceleration devices, a single proton bunch injected from the 500 MeV Booster ring and captured by the barrier bucket created by the induction step-voltages was accelerated to 6 GeV in the KEK proton synchrotron. A specific feature of the beam handling, such as the DR feedback, and a beam-dynamical property, such as the temporal evolution of the bunch size, are described. Beyond the demonstration, an injector-free induction synchrotron is under designing at KEK as a driver of all species of ion***. It will be briefly described.

* K. Takayama, published in Phys. Rev. Lett. soon.** K. Takayama and J. Kishiro, N. I.M. A 451, 304-317 (2000).*** K. Takayama, K. Torikai, Y. Shimosaki, and Y. Arakida, PCT/JP2006/308502

 
slides icon Slides  
TUXC03 Design and Status of the XFEL RF System 841
 
  • S. Choroba
 
  The RF system of the European XFEL under construction at present at DESY in Hamburg, Germany, consists of 27 RF stations. At a later point of time the number might be increased to 31. The RF system provides RF power at 1.3GHz for the superconducting cavities of the main linear accelerator, the cavities of the injector and the RF gun. Each station consists of a 10MW multiple beam klystron, a HV pulse modulator, HV pulse cables, a pulse transformer, an interlock system, a low level RF system, a waveguide distribution system and a number of auxiliary power supplies. This paper describes the layout of the RF system and summarizes the design and status of the main high power components.  
slides icon Slides