TUOCKI  —  HEHAC: High Energy Hadron Accelerators and Colliders   (26-Jun-07   15:00—16:00)

Chair: S.-I. Kurokawa, KEK, Ibaraki

Paper Title Page
TUOCKI01 Review of Recent Tevatron Operations 719
 
  • R. S. Moore
 
  Fermilab's Tevatron proton-antiproton collider continues to improve its luminosity performance at the energy frontier root(s) = 1.96 TeV. The recent Tevatron operation will be reviewed and notable tasks leading to advancements will be highlighted. The topics to be covered include: work performed during the 14-week shutdown in 2006, improved helical orbits, automatic orbit stabilization during high-energy physics (HEP) stores, optics corrections, improvements in the quench protection system, and avenues to maximizing the integrated luminosity delivered to the CDF and D0 experiments.  
slides icon Slides  
TUOCKI02 Summary of the RHIC Performance during the FY07 Heavy Ion Run 722
 
  • K. A. Drees
  • L. Ahrens, J. G. Alessi, M. Bai, D. S. Barton, J. Beebe-Wang, M. Blaskiewicz, J. M. Brennan, K. A. Brown, D. Bruno, J. J. Butler, R. Calaga, P. Cameron, R. Connolly, T. D'Ottavio, W. Fischer, W. Fu, G. Ganetis, J. Glenn, M. Harvey, T. Hayes, H.-C. Hseuh, H. Huang, J. Kewisch, R. C. Lee, V. Litvinenko, Y. Luo, W. W. MacKay, G. J. Marr, A. Marusic, R. J. Michnoff, C. Montag, J. Morris, B. Oerter, F. C. Pilat, V. Ptitsyn, T. Roser, J. Sandberg, T. Satogata, C. Schultheiss, F. Severino, K. Smith, S. Tepikian, D. Trbojevic, N. Tsoupas, J. E. Tuozzolo, A. Zaltsman, S. Y. Zhang
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under Contract Number DE-AC02-98CH10886 under the auspices of the US Department of Energy.

After the last successful RHIC Au-Au run in 2004 (Run-4), RHIC experiments now require significantly enhanced luminosity to study very rare events in heavy ion collisions. RHIC has demonstrated its capability to operate routinely above its design average luminosity per store of 2x1026 cm-2 s-1. In Run-4 we already achieved 2.5 times the design luminosity in RHIC. This luminosity was achieved with only 40% of bunches filled, and with β* = 1 m. However, the goal is to reach 4 times the design luminosity, 8x1026 cm-2 s-1, by reducing the beta* value and increasing the number of bunches to the accelerator maximum of 111. In addition, the average time in store should be increased by a factor of 1.1 to about 60% of calendar time. We present an overview of the changes that increased the instantaneous luminosity and luminosity lifetime, raised the reliability, and improved the operational efficiency of RHIC Au-Au operations during Run-7.

 
slides icon Slides  
TUOCKI03 Observations and Modeling of Beam-Beam Effects at the Tevatron Collider 725
 
  • A. Valishev
  • Y. Alexahin, V. A. Lebedev, R. S. Moore, V. D. Shiltsev
    Fermilab, Batavia, Illinois
 
  This report summarizes recent experience with beam-beam effects at the Tevatron collider. Improvements in the beam life time resulting from implementation of the new helical orbit are analyzed. Effects of second order chromaticity correction and beam-beam compensation with Electron Lenses are studied.  
slides icon Slides  
TUOCKI04 Experimental Demonstration of Beam-Beam Compensation by Tevatron Electron Lenses and Prospects for the LHC 728
 
  • V. D. Shiltsev
  • Y. Alexahin, V. Kamerdzhiev, G. F. Kuznetsov, X. Zhang
    Fermilab, Batavia, Illinois
  • K. Bishofberger
    LANL, Los Alamos, New Mexico
 
  We report the first experimental demonstration of compensation of beam-beam interaction effects with use of electron beams. Long-range and head-on interactions of high intensity proton and antiproton beams have been dominating sources of beam loss and lifetime limitations in the Tevatron in Collider Run II (2001-present). Electron lense acting on proton bunches has doubled their lifetime by compensating beam-beam interaction with antiprotons. We present results of the experiments, operational details and discuss possibilities of using electron lenses for beam-beam compensation in LHC.  
slides icon Slides