Paper | Title | Page |
---|---|---|
TUOBKI01 | Experimental Characterization of the Spallation Neutron Source Accumulator Ring Collimation System | 703 |
|
||
Funding: ORNL/SNS is managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-00OR22725. The SNS ring and associated transport lines, commissioned in January 2006, are designed to accumulate and deliver up to 1.5·1014, 1 GeV protons at 60 Hz to a liquid mercury target for neutron production. In order to control activation and to allow for routine hands-on maintenance of accelerator components, beam loss in most of the ring must remain below 1 W/m . For the full 1.4 MW beam, this translates to a fractional beam loss limit of 0.01%. Accomplishing this loss limit at full beam power will require successful utilization of the ring's two-stage betatron collimation system. In this paper we present the results of initial collimation experiments. We characterize the collimation-induced beam-loss pattern and compare our results with simulations. In addition, we discuss other existing beam-loss-related challenges in the ring. |
||
|
Slides | |
TUOBKI02 | Low Emittance Muon Colliders | 706 |
|
||
Funding: The work described here was supported in part by DOE SBIR/STTR grants DE-FG02-03ER83722, 04ER86191, 04ER84016, 05ER86252, 05ER86253 and 06ER86282. Advances in ionization cooling, phase space manipulations, and technologies to achieve high brightness muon beams are stimulating designs of high-luminosity energy-frontier muon colliders. Simulations of Helical Cooling Channels (HCC) show impressive emittance reductions, new ideas on reverse emittance exchange and muon bunch coalescing are being developed, and high-field superconductors show great promise to improve the effectiveness of ionization cooling. Experiments to study RF cavities pressurized with hydrogen gas in strong magnetic fields have had encouraging results. A 6-dimensional HCC demonstration experiment is being designed and a 1.5 TeV muon collider is being studied at Fermilab. Two new synergies are that very cool muon beams can be accelerated in ILC RF structures and that this capability can be used both for muon colliders and for neutrino factories. These advances are discussed in the context of muon colliders with small transverse emittances and with fewer muons to ease requirements on site boundary radiation, detector backgrounds, and muon production. |
||
|
Slides |