TUOBAB  —  SPBDO/TICP: Beam Dynamics & Optics/Instabilities & Collective Processes   (26-Jun-07   12:00—12:30)

Chair: A. Dragt, UMD, College Park, Maryland

Paper Title Page
TUOBAB01 Beam Dynamics of the 250 MeV Injector Test Facility 785
 
  • A. Adelmann
  • R. J. Bakker, C. Kraus, K. L. Li, B. S.C. Oswald, M. Pedrozzi, J.-Y. Raguin, T. Schietinger, F. Stulle, A. F. Wrulich
    PSI, Villigen
  • J. Qiang
    LBNL, Berkeley, California
 
  The PSI-FEL/LEG project aims for the development of a pulsed high-brightness, high-current electron source which is one of the cornerstones for a cost-efficient high-power laser-like X-ray light-source. Creating an ultra low emittance beam is a great challenge, transporting i.e. accelerating and compressing is equally difficult. We present a 3D start-to-end simulation of our planned 250 MeV injector test facility. The injector consists of a 2 cell standing wave l-band cavity followed by a ballistic bunching section. The following L-band and S-band structures accelerate the electron beam up to the final energy of 250 MeV. An X-band RF structure prepares the beam for the following bunch compressor in which the target current of 350 ampere is reached. The target value of the slice emittance is 0.10 [mm mrad] therefore precise beam dynamics simulations are needed. For the 3D simulations we use IMPACT-T, a time domain parallel particle tracking code in which the self fields are treated using electrostatic approximation . We discuss various issues such as projected and slice emittance preservation and shade light on some of the differences between an envelope and the 3D model.  
slides icon Slides  
TUOBAB02 Experimental Characterization of the Transverse Phase Space of a 60-MeV Electron Beam through a Compressor Chicane 788
 
  • F. Zhou
  • R. B. Agustsson, G. Andonian, D. B. Cline, A. Y. Murokh, J. B. Rosenzweig
    UCLA, Los Angeles, California
  • A. C. Kabel
    SLAC, Menlo Park, California
  • V. Yakimenko
    BNL, Upton, Long Island, New York
 
  Funding: U. S. DOE of Sciences

Space charge and coherent synchrotron radiation may deteriorate electron beam quality when the beam passes through a magnetic bunch compressor. This paper presents the transverse phase-space tomographic measurements for a compressed beam at 60 MeV, around which energy the first stage of magnetic bunch compression takes place in most advanced linacs. Transverse phase-space bifurcation of a compressed beam is observed at that energy, but the degree of the space charge-induced bifurcation is appreciably lower than the one observed at 12 MeV. The Trafic4 simulation confirms the observation.

The paper was published at PRST-AB, November 2006

 
slides icon Slides