Paper | Title | Page |
---|---|---|
MOZBKI01 | CESR-C: A Wiggler-Dominated Collider | 48 |
Funding: Work supported by US National Science Foundation grant PHY-0202078 CESR-c operates with twelve 2.1 Tesla wigglers that account for 90% of the synchrotron radiation with beam energy in the range of 1.8 to 2.1 GeV. The wigglers reduce the radiation damping time from 0.5 seconds to 50 milliseconds. The carefully designed wigglers restrict neither physical nor dynamic aperture of the storage ring, though both quadrupole and sextupole distributions must be tailored to compensate the primary optics effects of the wigglers. Colliding beam performance limits are determined by the numerous parasitic beam-beam interactions in the single ring. Several approaches taken to mitigate these limiting effects are described herein. The CESR-c wigglers are an excellent match to the requirements for future damping rings. We describe how with flexible optics, extensive infrastructure, and resource expertise, they form an effective test bed for assessment and solution of damping ring issues such as electron cloud and ion effects, and achieving ultra-low emittance beams. |
||
|
Slides | |
MOZBKI02 | The BEPC II: Status and Early Commissioning | 53 |
|
||
BEPCII is the upgrade project of Beijing Electron Positron Collider (BEPC). The installation of its storage ring components except the superconducting (SC) insertion magnets was completed in early November, 2006. While the improvement of the cryogenic system for SC magnets is in progress, the commissioning of the synchrotron radiation (SR) mode for the so called back-up scheme with conventional magnets adopted in the interaction region (IR), started on Nov. 13, 2006. The first electron beam was stored on Nov. 18 and later beam was provided to SR users for about 1 month starting from Dec. 25, 2006. The commissioning of the collision mode including the electron and positrion rings started in Feb. 2007. The first beam collision was realized on Mar. 25. Then optimization of the beam parameters was done. On May 14, a 100mA to 100mA beam collision was achieved with 20 bunches for each beam. The luminosity estimated from the measured beam-beam parameters has reached that of BEPC. From May 25 the machine turns to the second run of the SR mode. This paper provides an overview of the construction and introduce the commissioning results of the backup scheme of BEPCII. | ||
|
Slides | |
MOZBKI03 | The JLab 12 GeV Energy Upgrade of CEBAF for QCD and Hadronic Physics | 58 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177 CEBAF is a 5-pass, recirculating cw electron linac operating at ~6 GeV. The 12-GeV Upgrade is a $300M project anticipated to receive Critical Decision 2 approval in late summer of 2007 and begin construction activities in 2008; funding for the project is provided by the DOE Office of Nuclear Physics which will double the beam energy. The new energy reach will permit significant extensions in research into non-perturbative aspects of QCD. Areas of interest are Generalized Parton Distributions (GPDs), measurements at high-xBjorken, and the use of hybrid mesons to explore the nature of quark confinement. The upgrade includes: doubling the accelerating voltages of the linacs by adding 10 new high-performance cryomodules plus the requisite expansion of the 2K cryogenics plant and rf power systems, upgrading the beam transport system from 6 GeV to 12 GeV capability through extensive re-use of existing hardware, adding one recirculation arc, adding a new experimental area and the beamline to it, building new experimental equipment for the GPD, high-xBjorken, and hybrid mesons programs. The presentation will touch on the science and give some details of the accelerator plans. |
||
|
Slides |