MOOAAB  —  LSAFEL: Light Sources and Free-Electron Lasers   (25-Jun-07   15:00—16:00)

Chair: I. S. Ko, PAL, Pohang, Kyungbuk

Paper Title Page
MOOAAB01 Philosophy for NSLS II Design with Sub-nanometer Horizontal Emittance 77
 
  • S. Ozaki
  • J. Bengtsson, S. L. Kramer, S. Krinsky, V. Litvinenko
    BNL, Upton, Long Island, New York
 
  In this paper we present design philosophy for reliable light sources with sub-nm horizontal emittance used for conceptual design of NSLS II. We discuss the fundamentals of the concept, such as using reliable achromatic low-emittance lattice with large bending radius and damping wigglers with modest peak field. We also discuss a natural scale of the emittance set by intra-beam scattering and its influence of the choice of the bending radius for the ring. In addition, we review a very weak dependence of the beam lifetime on the emittance, and present a clear physics explanation of the phenomena. Finally, we list main parameters of the 3 GeV NSLS II X-ray ring.  
slides icon Slides  
MOOAAB02 Experimental Results with the SPARC Emittance-meter 80
 
  • M. Ferrario
  • D. Alesini, M. Bellaveglia, S. Bertolucci, R. Boni, M. Boscolo, M. Castellano, A. Clozza, L. Cultrera, G. Di Pirro, A. Drago, A. Esposito, D. Filippetto, V. Fusco, A. Gallo, G. Gatti, A. Ghigo, M. Incurvati, C. Ligi, M. Migliorati, A. Mostacci, E. Pace, L. Palumbo, L. Pellegrino, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, F. Tazzioli, S. Tomassini, C. Vaccarezza, M. Vescovi, C. Vicario
    INFN/LNF, Frascati (Roma)
  • A. Bacci, S. Cialdi, A. R. Rossi, L. Serafini
    INFN-Milano, Milano
  • L. Catani, E. Chiadroni, A. Cianchi
    INFN-Roma II, Roma
  • A. M. Cook, M. P. Dunning, P. Frigola, J. B. Rosenzweig
    UCLA, Los Angeles, California
  • L. Giannessi, M. Quattromini, C. Ronsivalle
    ENEA C. R. Frascati, Frascati (Roma)
  • P. Musumeci, M. Petrarca
    INFN-Roma, Roma
 
  The SPARC project foresees the realization of a high brightness photo-injector to produce a 150-200 MeV electron beam to drive a SASE-FEL in the visible light. As a first stage of the commissioning a complete characterization of the photoinjector has been done with a detailed study of the emittance compensation process downstream the gun-solenoid system. For this purpose a novel beam diagnostic device, called emittance meter, has been developed and used at SPARC. This device has allowed to measure the evolution of beam sizes, energy spread and rms transverse emittances at different location along the beamline, in the region where space-charge effects dominate the electron dynamics and the emittance compensation process takes place. In this paper we report our commissioning experience and the results obtained. In particular a comparison between the performances of a Gaussian laser pulse versus a Flat Top laser pulse will be discussed. We report also the first experimental observation of the double emittance minima effect on which is based the optimised matching with the SPARC linac.  
slides icon Slides  
MOOAAB03 High Power Operation of the JLab IR FEL Driver Accelerator 83
 
  • S. V. Benson
  • K. Beard, G. H. Biallas, J. Boyce, D. B. Bullard, J. L. Coleman, D. Douglas, H. F.D. Dylla, R. Evans, P. Evtushenko, C. W. Gould, A. C. Grippo, J. G. Gubeli, D. Hardy, C. Hernandez-Garcia, C. Hovater, K. Jordan, J. M. Klopf, R. Li, S. W. Moore, G. Neil, M. Poelker, T. Powers, J. P. Preble, R. A. Rimmer, D. W. Sexton, M. D. Shinn, C. Tennant, R. L. Walker, G. P. Williams, S. Zhang
    Jefferson Lab, Newport News, Virginia
 
  Funding: This work supported by the Off. of Naval Research, the Joint Technology Off., the Commonwealth of Virginia, the Air Force Research Lab, Army Night Vision Lab, and by DOE Contract DE-AC05-060R23177.

Operation of the JLab IR Upgrade FEL at CW powers in excess of 10 kW requires sustained production of high electron beam powers by the driver ERL. This in turn demands attention to numerous issues and effects, including: cathode lifetime; control of beamline and RF system vacuum during high current operation; longitudinal space charge; longitudinal and transverse matching of irregular/large volume phase space distributions; halo management; management of remnant dispersive effects; resistive wall, wake-field, and RF heating of beam vacuum chambers; the beam break up instability; the impact of coherent synchrotron radiation (both on beam quality and the performance of laser optics); magnetic component stability and reproducibility; and RF stability and reproducibility. We discuss our experience with these issues and describe the modus vivendi that has evolved during prolonged high current, high power beam and laser operation.

 
slides icon Slides  
MOOAAB04 Quadruple-bend Achromatic Low Emittance Lattice Studies 86
 
  • M.-H. Wang
  • H.-P. Chang, H. C. Chao, P. J. Chou, C.-C. Kuo
    NSRRC, Hsinchu
  • S.-Y. Lee, F. Wang
    IUCF, Bloomington, Indiana
 
  A quadruple-bend-achromatic (QBA) cell, defined as a super cell made of two double-bend (DB) cells with different outer and inner dipole bend angles, is found to provide a factor of two in lowering the beam emittance of electron synchrotron light sources. The ratio of bending angles of the inner dipoles to that of the outer dipoles is numerically found to be about 1.51.6 for an optimal low beam emittance in the isomagnetic condition. The QBA lattice provides an advantage over the double-bend achromat or the double-bend non-achromat in performance by providing some zero dispersion straight-sections and a small natural beam emittance. A lattice with 12 QBA cells with a preliminary dynamic aperture study serves as an example. The effects of the different types of insertion devices (ID) on the emittance in dispersive long straight and non-dispersive long straight are also simulated and reported.  
slides icon Slides