08 Applications of Accelerators, Technology Transfer and Relations with Industry

U01 Medical Applications

Paper Title Page
MOZAC02 A Survey of Hadron Therapy Accelerator Technologies 115
 
  • S. Peggs
  • J. Flanz
    MGH-FHBPTC, Boston, Massachusetts
  • T. Satogata
    BNL, Upton, Long Island, New York
 
  We survey the numerous technological approaches used for hadron beam delivery for radiotherapy, including fixed cyclotrons (both normal and superconducting), superconducting cyclotrons mounted on gantries, and slow and fast cycling synchrotrons. Protons, carbon ions and antiprotons have different kinds of sources. Clinically relevant light ions and protons have quite different beam rigidities, therefore leading to quite different gantry solutions.  
slides icon Slides  
MOOAC02 A Short-Pulse Hard X-ray Source with Compact Electron LINAC Via Laser-Compton Scattering for Medical and Industrial Radiography 121
 
  • H. Toyokawa
  • H. Ikeura-Sekiguchi, M. K. Koike, R. Kuroda, H. Ogawa, N. Sei, M. Tanaka, K. Y. Yamada, M. Y. Yasumoto
    AIST, Tsukuba, Ibaraki
  • T. Nakajyo, F. Sakai, T. Y. Yanagida
    SHI, Tokyo
 
  An intense, quasi-monochromatic hard X-ray beam has been generated via the laser-Compton scattering of a picosecond electron bunch with an intense femtosecond TW laser. A s-band linear accelerator of 40 MeV and Ti:Sa femtosecond TW laser were used to generate X-rays. We plan to increase the X-ray yield up to two-orders than the current one until FY2008. Our recent R&D for that purpose are generation of multi-pulse electron beam using a photo-cathode rf-gun, and multi-pulse laser cavity for Compton scattering. We briefly describe the specifications of the electron accelerator and the laser systems, together with the developments and modifications being undergone.  
slides icon Slides  
THPMN004 A Synchrotron Based Particle Therapy Accelerator 2713
 
  • S. P. Møller
  • T. Andersen, F. Bødker, A. Baurichter, P. A. Elkiaer, C. E. Hansen, N. Hauge, T. Holst, I. Jensen, L. K. Kruse, S. M. Madsen, M. Sager, S. V. Weber
    Danfysik A/S, Jyllinge
  • K. Blasche
    BTE Heidelberg, Ingeniurburo, Schriesheim
  • B. Franczak
    GSI, Darmstadt
 
  Danfysik and Siemens have entered a cooperation to market and build Particle Therapy* systems for cancer therapy. The accelerators will consist of an injector (7 MeV/u proton and light ions), a compact and simple synchrotron and a choice of fixed-angle horizontal and semi-vertical beamlines together with gantry systems. The optimized lattice configuration, including the design of injection and extraction systems, provides large transverse phase space acceptance with minimum magnet apertures. The resulting synchrotron will have light magnets, low values of peak power for pulsed operation and minimum dc power consumption. The beam can be accelerated to the maximum magnetic rigidity of 6.6 Tm in less than 1 s. A beam of 48-250 MeV protons and 88-430 MeV/u carbon ions can be slowly extracted during up to 10s. The intensity for protons and carbon ions will be well beyond the needs of scanning beam applications. The design and performance specs of the synchrotron will be described in detail including simulations. Design and manufacture of the subsystems are in progress. *Particle Therapy is a work in progress and requires country-specific regulatory approval prior to clinical use.  
THPMN014 Commissioning of the Linac for the Heidelberg Heavy Ion Cancer Therapy Centre (HIT) 2734
 
  • M. T. Maier
  • W. Barth, W. B. Bayer, L. A. Dahl, L. Groening, C. M. Kleffner, B. Schlitt, K. Tinschert, H. Vormann, S. Yaramyshev
    GSI, Darmstadt
  • U. Ratzinger, A. Schempp
    IAP, Frankfurt am Main
 
  A clinical facility for cancer therapy using energetic proton and ion beams (C, He and O) is under construction and will be installed at the Radiologische Universitätsklinik in Heidelberg, Germany. It consists of two ECR ion sources, a 7 MeV/u linac injector, and a 6.5 Tm synchrotron to accelerate the ions to final energies of 50-430 MeV/u. The linac comprises a 400 keV/u RFQ and a 7 MeV/u IH-DTL operating at 216.8 MHz. The commissioning of the linac with beam was performed in three steps for the LEBT, the RFQ, and the IH-DTL. For this purpose a versatile beam diagnostic test bench has been used consisting of a slit-grid emittance measurement device, transverse pick-ups providing for time of flight energy measurements, SEM-profile grids, and different devices for beam current measurements. In this contribution the procedure and the results of the successful commissioning in the year 2006 of the linear accelerator are reported.  
THPMN020 Design Studies of the 300 AMeV Superconducting Cyclotron for Hadrontherapy 2748
 
  • M. M. Maggiore
  • L. Calabretta, D. Campo, L. A.C. Piazza, D. Rifuggiato
    INFN/LNS, Catania
 
  A design study of a compact superconducting cyclotron for hadrontherapy is carrying out at Laboratori Nazionali del Sud of Catania. This machine is able to accelerate light ions with a charge to mass ratio of 0,5 up to the maximum energy of 300 AMeV. Light ions like Carbon will be extracted by an electrostatic deflector at the energy of 3,6 GeV. The range of this beam is of 174 mm in water and is enough to threat all the tumors of the head and neck district. Despite the machine is able to accelerate also the ionised hydrogen molecule up to 300 AMeV, an extraction by stripping allow us to deliver a proton beam with energy of 250 MeV. The range in water of proton beam with this energy being 370 mm. The main parameters of the cyclotron and the main features of the beam dynamics will be presented.  
THPMN035 Pinpoint keV/MeV X-ray Sources for X-ray Drug Delivery System 2793
 
  • M. Uesaka
  • F. Sakamoto, A. Sakumi
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken
 
  X-ray Drug Delivery System (DDS) is the most advanced radiation therapy coming after IMRT (Intensity Modulated Radiation Therapy) and IGRT (Image Guided). DDS uses advanced nano-scaled polymers which contain and deliver drug or contrast agent to cancers without side effects. Several X-ray DDS poses high-Z atoms like Pt and Au to absorb X-rays effectively and used as contrast agent for inspection. Moreover, they have radiation enhancement effect by emission of Auger electron and successive characteristic X-rays. The enhancement factor off Pt and Au is more than five. This can be used for therapy. This new modality must be very important for inspection and therapy of deep cancers. We are making use of our Compton scattering monochromatic keV X-ray source and MeV linac aspinpoint keV/MeV X-ray sources for the purpose. Physical analysis and evaluation of the contrast efficiency and radiation enhancement of the X-ray DDS are under way. Furthermore, a new compact X-band linac with a multi-beam klystron for a pinpoint X-ray source is proposed and designed. Updated research status and result are presented.  
THPMN076 PAMELA - A Model for an FFAG based Hadron Therapy Machine 2880
 
  • J. K. Pozimski
  • R. J. Barlow
    UMAN, Manchester
  • J. Cobb, T. Yokoi
    OXFORDphysics, Oxford, Oxon
  • B. Cywinski
    University of Leeds, Leeds
  • T. R. Edgecock
    STFC/RAL, Chilton, Didcot, Oxon
  • A. Elliott
    Beatson Institute for Cancer Research, Glasgow
  • M. Folkard, B. Vojnovic
    Gray Cancer Institute, Northwood
  • I. S.K. Gardner
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • B. Jones
    University Hospital Birmingham, Edgbaston, Birmingham
  • K. Kirkby, R. Webb
    UOSIBS, Guildford
  • G. McKenna
    University of Oxford, Oxford
  • K. J. Peach
    JAI, Oxford
  • M. W. Poole
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
  Approximately one third of the world?s 15000 accelerators are used for tumour therapy and other medical applications. Most of these are room temperature cyclotrons: a few are synchrotrons. Neither of these have ideal characteristics for a dedicated medical accelerator. The characteristics of FFAGs make them ideally suited to such applications, as the much smaller magnet size, greater compactness and variable energy offers considerable cost and operational benefits especially in a hospital setting. In the first stage the work on PAMELA will focus on the optimization of the FFAG design to deliver the specific machine parameters demanded by therapy applications. In this phase of the PAMELA project the effort will concentrate on the design of a semi-scaling type FFAGs to deliver a 450 MeV/u carbon ion beam, including detailed lattice and tracking studies. The second stage will use the existing expertise in the BASROC consortium to undertake a design of the magnets and RF system for PAMELA. An outline of the overall concept of PAMELA will be discussed and the actual status of the work will be presented.  
THPMN078 The CONFORM Project: Construction of a NonScaling FFAG and its Applications 2886
 
  • R. J. Barlow
  • N. Bliss
    STFC/DL, Daresbury, Warrington, Cheshire
  • T. R. Edgecock
    STFC/RAL, Chilton, Didcot, Oxon
  • N. Marks, H. L. Owen, M. W. Poole
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • K. J. Peach
    JAI, Oxford
  • J. K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London
 
  The CONFORM project, recently funded as part of the UK 'Basic Technology' initiative, will build a 20 MeV Non-Scaling FFAG (EMMA) at Daresbury. The experience gained will be used for the design of a proton machine (PAMELA) for medical research, and other applications for Non-Scaling FFAGs in different regimes will be explored. The successful development of this type of accelerator will provide many opportunities for increased exploitation, especially for hadron therapy for treatment of tumours, and the project provides a framework where machine builders will work with potential user communities to maximise the synergies and help this to happen successfully.  
THPMN103 New Nonscaling FFAG for Medical Applications 2951
 
  • C. Johnstone
  • S. R. Koscielniak
    TRIUMF, Vancouver
 
  Funding: Work supported by by the Fermilab Research Association, Inc., under contract DE-AC02-76CH00300 with the U. S. Department of Energy.

Fixed Field Alternating Gradient (FFAG) machines have been the subject of recent international activity due to their potential for medical applications and accelerator-based technologies. In particular, nonscaling FFAGs (where the optics are not constant and therefore do not scale with momentum) stand to offer the high current advantage of the cyclotron combined with the smaller radial aperture of the synchrotron plus variable extraction energy. Here, a hybrid design for a nonscaling FFAG accelerator has been invented which uses both edge and alternating-gradient focusing principles applied to a combined-function magnet applied in a specific configuration to stabilize tunes through an acceleration cycle which extends over a factor of 2-6 in momentum. Using normal conducting magnets, the final, extracted energy from this machine attains 400 MeV/nucleon and a normalized emittance of ~10 - 20π, and thus supports a carbon ion beam in the energy range of interest for cancer therapy.

 
THPMS092 Superconducting Non-Scaling FFAG Gantry for Carbon/Proton Cancer Therapy 3199
 
  • D. Trbojevic
  • R. C. Gupta, B. Parker
    BNL, Upton, Long Island, New York
  • E. Keil
    CERN, Geneva
  • A. Sessler
    LBNL, Berkeley, California
 
  Funding: * Supported by the U. S. Department of Energy under Contract No. DE-AC02-98CH10886. ** Work supported by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231

We report on improvements in the non-scaling Fixed Field Alternating Gradient (FFAG) gantry design. As we previously reported*, a major challenge of the carbon/proton cancer therapy facilities is isocentric gantry design. The weight of the isocentric gantry transport elements in the latest Heidelberg carbon/proton facility is 135 tons**. In this report we detail improvements to the previous non-scaling gantry design. We estimate that this non-scaling FFAG gantry would be almost hundred times lighter than traditional heavy ion gantries. Very strong focusing with small dispersion permits passage of different energies of carbon beams through the gantry's fixed magnetic field.*