Paper | Title | Page |
---|---|---|
WEYAB02 | Availability and Reliability Issues for ILC | 1966 |
|
||
Funding: Work supported by the U. S. Department of Energy under contract number DE-AC03-76SF00515. The International Linear Collider will be the largest most complicated accelerator ever built. For this reason extensive work is being done early in the design phase to ensure that it will be reliable enough. This includes gathering failure mode data from existing accelerators and simulating the failures and repair times of the ILC. This simulation has been written in a general fashion using MATLAB and could be used for other accelerators. Results from the simulation tool have been used in making some of the major ILC design decisions and an unavailability budget has been developed. |
||
|
Slides | |
WEOCAB01 | Design of the Beam Delivery System for the International Linear Collider | 1985 |
|
||
The beam delivery system for the linear collider focuses beams to nanometer sizes at the interaction point, collimates the beam halo to provide acceptable background in the detector and has a provision for state-of-the art beam instrumentation in order to reach the physics goals. The beam delivery system of the International Linear Collider has undergone several configuration changes recently. This paper describes the design details and status of the baseline configuration considered for the reference design. | ||
|
Slides | |
THOAC03 | Measurement of the Beam's Trajectory Using the Higher Order Modes it Generates in a Superconducting Accelerating Cavity | 2642 |
|
||
Funding: US DOE Contract #DE-AC02-76SF00515 It is well known that an electron beam excites Higher Order Modes (HOMs) as it passes through an accelerating cavity~[panofsky68]. The properties of the excited signal depend not only on the cavity geometry, but on the charge and trajectory of the beam. It is, therefore, possible to use these signals as a monitor of the beam's position. Electronics were installed on all forty cavities present in the FLASH~[flashref] linac in DESY. These electronics filter out a mode known to have a strong dependence on the beam's position, and mix this down to a frequency suitable for digitisation. An analysis technique based on Singular Value Decomposition (SVD) was developed to calculate the beam's trajectory from the output of the electronics. The entire system has been integrated into the FLASH control system. |
||
|
Slides | |
FRPMS073 | Picosecond Bunch Length and Energy-z Correlation Measurements at SLAC's A-Line and End Station A | 4201 |
|
||
Funding: US DOE Contract #DE-AC02-76FS00515 We report on measurements of picosecond bunch lengths and the energy-z correlation of the bunch with a high energy electron test beam to the A-line and End Station A (ESA) facilities at SLAC. The bunch length and the energy-z correlation of the bunch are measured at the end of the linac using a synchrotron light monitor diagnostic at a high dispersion point in the A-line and a transverse RF deflecting cavity at the end of the linac. Measurements of the bunch length in ESA were made using high frequency diodes (up to 100 GHz) and pyroelectric detectors at a ceramic gap in the beamline. Modelling of the beam's longitudinal phase space through the linac and A-line to ESA is done using the 2-dimensional tracking program LiTrack, and LiTrack simulation results are compared with data. High frequency diode and pyroelectric detectors are planned to be used as part of a bunch length feedback system for the LCLS FEL at SLAC. The LCLS also plans precise bunch length and energy-z correlation measurements using transverse RF deflecting cavities. |
||
FRPMS049 | Resolution of a High Performance Cavity Beam Position Monitor System | 4090 |
|
||
International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. A metrology system for the three BPMs was recently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame and has demonstrated that the three BPMs behave as a rigid-body to less than 5 nm. To date, we have demonstrated a BPM resolution of less than 20 nm over a dynamic range of ± 20 microns. |