Paper | Title | Page |
---|---|---|
THPMS091 | The Superconducting Magnets of the ILC Beam Delivery System | 3196 |
|
||
Funding: Work supported by the US Department of Energy under contract DE-AC02-98CH10886. A wide variety of superconducting magnets are needed in the ILC Beam Delivery System (BDS) to maximize luminosity and minimize experimental backgrounds. Compact final focus quadrupoles and multifunction correction coils are used with 14 mr total crossing angle to focus incoming beams to few nanometer spot sizes while focusing outgoing disrupted beams into a separate extraction beam line. Large aperture anti-solenoids correct deleterious nonlinear effects that arise due to the overlap of focusing fields with the main detector solenoid. Far from the interaction point (IP) sets of strong small aperture octupoles help minimize backgrounds at the IP due to beam halo particles while weak large aperture dipoles integrated with the experimental detector reduce backgrounds due to beamstrahlung pairs generated at the IP. The physics requirements and magnetic design solutions for these magnets are reviewed in this paper. |
||
MOPAS093 | Vibration Measurements to Study the Effect of Cryogen Flow in a Superconducting Quadrupole | 643 |
|
||
Funding: Work supported by the US Department of Energy under contract DE-AC02-98CH10886.
The conceptual design of compact superconducting magnets for the International Linear Collider final focus is presently under development at BNL. A primary concern in using superconducting quadrupoles is the potential for inducing additional vibrations from cryogenic operation. We have employed a Laser Doppler Vibrometer system to measure the vibrations at resolutions ~1 nm (at frequencies above ~8 Hz) in a spare RHIC quadrupole coldmass under cryogenic conditions. Some preliminary results of these studies were presented at the Nanobeam 2005 workshop*. These results were limited in resolution due to a rather large motion of the laser head itself. As a first step towards improving the measurement quality, an actively stabilized isolation table was used to reduce the motion of the laser holder. The improved set-up will be described, and vibration spectra measured at cryogenic temperatures, both with and without helium flow, will be presented.
*A. Jain, et al., Nanobeam 2005, Kyoto, Japan, Oct.17-21, 2005; paper WG2d-05; available at http://wwwal.kuicr.kyoto-u.ac.jp/NanoBM . |
||
WEOCAB01 | Design of the Beam Delivery System for the International Linear Collider | 1985 |
|
||
The beam delivery system for the linear collider focuses beams to nanometer sizes at the interaction point, collimates the beam halo to provide acceptable background in the detector and has a provision for state-of-the art beam instrumentation in order to reach the physics goals. The beam delivery system of the International Linear Collider has undergone several configuration changes recently. This paper describes the design details and status of the baseline configuration considered for the reference design. | ||
|
Slides | |
THPMS092 | Superconducting Non-Scaling FFAG Gantry for Carbon/Proton Cancer Therapy | 3199 |
|
||
Funding: * Supported by the U. S. Department of Energy under Contract No. DE-AC02-98CH10886. ** Work supported by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 We report on improvements in the non-scaling Fixed Field Alternating Gradient (FFAG) gantry design. As we previously reported*, a major challenge of the carbon/proton cancer therapy facilities is isocentric gantry design. The weight of the isocentric gantry transport elements in the latest Heidelberg carbon/proton facility is 135 tons**. In this report we detail improvements to the previous non-scaling gantry design. We estimate that this non-scaling FFAG gantry would be almost hundred times lighter than traditional heavy ion gantries. Very strong focusing with small dispersion permits passage of different energies of carbon beams through the gantry's fixed magnetic field.* |
||
FRXKI01 | Superconducting Magnet Needs for the ILC | 3732 |
|
||
The ILC Reference Design Report will be completed early in 2007. The Magnet Systems Group was formed to translate magnetic field requirements into magnet designs and cost estimates for the Reference Design. As presently configured, the ILC will have more than 11,000 magnetic elements of which more than 1200 will be based on superconducting technology. This paper will describe the major superconducting magnet needs for the ILC as presently determined by the Magnet Systems Group and the leaders of the Area Systems Groups, responsible for beamline design. The superconducting magnet components include the Main Linac quadrupoles, the Positron Source undulators, the Damping Ring wigglers, and the complex array of Final Focus superconducting elements in the Beam Delivery System. | ||
|
Slides |