|
- J. B. Rosenzweig
- M. Bellaveglia, M. Boscolo, G. Di Pirro, M. Ferrario, D. Filippetto, G. Gatti, L. Palumbo, C. Vicario
INFN/LNF, Frascati (Roma)
- L. Catani, A. Cianchi
INFN-Roma II, Roma
- A. M. Cook, M. P. Dunning, R. J. England, P. Musumeci
UCLA, Los Angeles, California
- S. M. Jones
Jet Propulsion Laboratory, Pasadena, California
|
|
|
Recent studies have shown that by illuminating a photocathode with an ultra-short laser pulse of appropriate transverse profile, a uniform density, ellipsoidally shaped electron bunch can be dynamically formed. Linear space-charge fields then exist in all dimensions inside of the bunch, which minimizes emittance growth. Here we study this process, and its marriage to the standard emittance compensation scenario that is implemented in most modern photoinjectors. We show that the two processes are compatible, with simulations indicating that a very high brightness beam can be obtained. An initial time-resolved experiment has been performed at the SPARC injector in Frascati, involving Cerenkov radiation produced at an aerogel. We discuss the results of this preliminary experiment, as well as plans for future experiments to resolve the ellipsoidal bunch shape at low energy. Future measurements at high energy based on fs resolution RF sweepers are also discussed.
|
|