Paper | Title | Page |
---|---|---|
MOOBAB01 | Time-Resolved Phase Space Tomography at Flash Using a Transverse Deflecting RF-Structure | 104 |
|
||
To initiate Self-Amplification of Spontaneous Emission (SASE) in single-pass Free Electron Lasers (FEL), electron bunches with high peak current and small slice emittance and energy spread are necessary. At FLASH at DESY, this is accomplished by longitudinal bunch compression in two magnetic chicanes. The compression process may be accompanied by distortions from coherent synchrotron radiation and space charge forces. Their effect on the bunch properties can be studied with a vertically deflecting rf-structure (LOLA), which allows to measure the longitudinal phase space distribution and horizontal slice emittance of single bunches. In combination with tomographic methods the horizontal phase space distribution of time slices can be reconstructed. In this paper measurement results for SASE operation are presented and compared to simulations and bunch properties infered from the radiation signal. | ||
|
Slides | |
WEPMN012 | Beam Loading Compensation Using Real Time Bunch Charge Information from a Toroid Monitor at FLASH | 2074 |
|
||
Funding: Deutsches Elektronen-Synchrotron - DESY At pulsed linear accelerators, fast proportional rf control compensates beam loading sufficiently for single or a few bunches. In the case of long bunch trains, additional measures have to be taken commonly by adding a compensation signal to the rf drive signals calculated from the predicted beam intensity. In contrast to predictive methods, techniques based on real time beam measurements are sensitive to fast changes of the beam intensity and bunch patterns. At FLASH we apply a beam loading compensation scheme based on toroid monitor signals. This paper presents the compensation scheme, the calibration procedure and the effect on the beam. |