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Abstract 
One of the most important problems for space charge 

dominated beams in the low energy part of 
superconducting linacs is halo creation. Many authors 
show one of the key effects in halo creatiation is 
parametric resonance due to the mismatched beta-
function oscillation (between core and particle). To 
estimate parametric resonance conditions the nonlinear 
tune shift for binomial distributed beam is described 
theoretically in this article. Simultaneously the beam 
dynamics simulation 3D PIC code was developed. The 
transverse oscillation frequencies are compared with 
parametric resonance criteria. As a result the 
recommendation for space charge shift is concluded to 
minimize halo creation. 

EQUATION OF MOTION 
There are two different concepts explaining the halo 

creation: mechanical and thermodynamical. In linear 
accelerators the acceleration time is much shorter than the 
relaxation time of the system. Therefore a mechanical 
concept is more appropriate than a thermodynamical one. 
The development of this concept was attempted by Yu. 
Senichev [1]. The point was to describe qualitatively 
nonlinear parametric resonances due to mismatched RMS 
size of bunch and forced envelope oscillations in alternate 
gradient focusing structure. Obviously, this estimation 
can be done only for the “frozen core” of bunch or for the 
case, when the redistribution in halo does not affect on the 
core, and the resonance conditions cause increasing the 
transverse oscillations of particles in halo only. We used 
the isolated single resonance approach.  

To solve the equation analytically the following 
approximations are taken: axial symmetry, binomial 
distribution of particles, smooth approximation and 
“frozen” space charge forces. In order to clarify the 
overall picture of halo formation mechanism shortened 
derivations of equations are carried out. Firstly one can 
write the general equation of radial motion for arbitrary 
particle considering axial symmetry of RF field: 
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G(z) – function describing quadrupoles gradient, Fsc – 
space charge force, φ qs – particle phase, βqs – particle 

velocity, βstr –accelerating structure phase velocity.  
In case of binomial distribution the particle density can 

be written as: 
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where m – order of binomial distribution, 0r – envelope of 
the beam which is connected with RMS deviation by the 
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σ . From this it follows that space charge 

force acting at arbitrary particle )( vBEeF −=  can be 
found from Poisson equation:  

  (2) 

 
where n – number of particles in the bunch, l – length of 
the bunch. Due to the fact that the equation of motion 
includes quadrupole focusing term it is convenient to pass 
to new longitudinal coordinates Szs /=  normalized to 
focusing period S. Substituting (2) in (1) and designating 
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one can derive from (1):  
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As soon as Q(s) is periodical function the solution 
should be periodical too. Following Courant-Snyder 
formalism one can represent the solution as: 

  (3) 

where A – initial amplitude of oscillation, for envelope 
ε=A , β – beta function, η – oscillating function. It is 

important to note that if the motion equation in 
dimensionless coordinates s  then beta function should be 
also dimensionless and emittance dimension is m2. The 
envelope can be represented as )()( 2/12/1

0 ssr βε= . 
Substituting this and (3) to the equation of motion and 
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Here the linear part of the space charge force is 
transported to the left-hand side of equation. In order to 
solve this inhomogeneous differential equation firstly it is 
necessary to solve the homogeneous equation.  
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Homogeneous Motion Equation Solution 
The solution for η of homogeneous equation will be 

considered in the form ϕiea ⋅ . Substituting this in 
homogeneous equation of motion and separating 
imaginary and real part one can obtain the equation 
system: 

 

   (4) 

 
 

The first equation reflects the Floquet phase 
dependency on Floquet amplitude and the second 
equation is the well known envelope equation. Now let’s 
solve the envelope equation in smooth approximation  

  (5) 

where R(s) – slow function, q(s) – fast oscillating 
function. After averaging by focusing period one can 
obtain averaged envelope equation in smooth 
approximation:  

  (6) 

 
The stationary solution will be at 0=R&& : 
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where 
02εµ

mCh sc=  –  analogue of Kapchinskiy’s parameter. 

Now let’s consider behaviour of mismatched beam using 
perturbation theory )()( srRsR c ∆+= . Substituting this to 
(6) one can find that the solution for perturbation can be 
represented as:  

 (7) 

 
where mr  – amplitude of mismatching, µ~ – frequency of 
perturbed envelope oscillation. In case of extremely high 
currents the frequency of envelope oscillations is 
approaches to 20µ , while the frequency of particle 
oscillations in the centre of bunch is approaches to null. 
Substituting (7) and (6) into (5) one can write the 
approximate solution for beta function:  

  (8) 

Thus, the approximate solution of homogeneous motion 
equation considering linear space charge force is found.  

Inhomogeneous Motion Equation Solution 
Unfortunately, the only clear way to solve the 

inhomogeneous motion equation is to abandon the 
Floquet functions. Considering that the perturbation is 
small it is possible to substitute second equation of (4) to 
inhomogeneous equation. In order to exclude first 

derivation term the equation can be written in new 
coordinate ∫=

s ds
0 β
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The complexity lies in that the derivatives in this 
equation are taken by τ  but right-hand side is depending 
on s . Considering periodical solution )1()( += srsr  let’s 
represent τ  in averaged form ss ⋅= µτ )( , where 

∫=
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ζµ  – average oscillation frequency. In this case 

the motion equation system can be rewritten: 
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Now let’s substitute (8) in the second equation of this 
motion equation system: 
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The solution for this equation can be found using 
asymptotical methods of Bogolubov-Mitropol’skij [2]. 
Following this asymptotical method η can be represented 
as )cos(θη a= , where in a  and θ  are in first 
approximation defined as: 

 
 

(9) 

 
 
 
 
 
 
 

Here ∫=
T
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)(1)]([ θθθ  – is the averaging operator. 

The first term in the right-hand side of the first equation is 
proportional to 2

cR  and after averaging it is equal zero 
because of orthogonal property for )(cos 12 θ−n  and 

)sin(θ . The second term in the right-hand side of the 
second equation contains constant constituent in 
expansion of )(cos2 θn  and this constant can be taken out 
from averaging operator. Thus, two oscillating 
components remain under averaging operator in both 
equations.  

Resonances Caused by Beta Function 
Modulation 

Examining (9) one can note that in order to perform 
averaging [2] it is necessary to introduce a slow phase. As 
soon as oscillating components under averaging operator 
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have different frequencies, the choice of considered 
resonance type should be done. First the resonance caused 
by mismatched beta function oscillation will be 
considered. Therefore q(s) function can be omitted 
expecting that frequencies of harmonics from q(s) 
function expansion are quite far from frequencies of 
nonlinear components binomial expansion and it does not 
contribute to the averaged value of right-hand side (9). 
The slow phase ψ can be introduced as: 

sknn rr µθψ ~)22(2 −−=   
Now, considering isolated resonance condition 

sr kn θµ &)22(~ −≈ , passing to the coordinates motion-angle 
Ia =2  and remaining the biggest item in binomial 

expansion k=0 one can write updated equation system. 
Supposing that it is canonical equation system the 
Hamiltonian can be written: 
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This Hamiltonian describes the averaged transverse 
motion in vicinity of the rn  nonlinear resonance for an 
arbitrary particle. Taking Tailor in a resonance point 

0II =  one can find for the Hamiltonian perturbation 
)(),(),( 00 IHIHIH r −= ψδψδ : 
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and for the separatrix size when particles will be captured 
in resonance:  

 

 (10) 

 
Amplitude of transverse oscillation increases for 

captured particles, but with increasing of amplitude the 
nonlinear tune shift leads the particles away from the 
resonance. 

Thus, the mechanical approach describes the system in 
the non-linear space charge resonance with the “frozen 
core”. However, the particles involved in the resonance 
are redistributed, and they try to destroy the resonance, 
taking the more smooth distribution. Nevertheless, this 
approach describes the halo growth in initial stage 
transforming into the stationary distribution, and it is the 
good quantitative and qualitative evaluation of halo 
growth stabilized on the fixed level.  

COMPUTATIONAL RESULTS 
Using modern calculation platforms it is possible to 

substitute practical values in order to observe Hamiltonian 
transformation. For instance, the above described 
Hamiltonian was calculated in MathCAD® for the 

COSY-Injector accelerating channel [3] with 17mA 
average current and 10% mismatch (see Fig. 1).  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Hamiltonian perturbation rH on forth order 
resonance conditions (n=2, sµθ ≈4 , 0II ≈ ). 

Using the same approach one can obtain Hamiltonian 
and resonance conditions for resonances caused by beta 
function oscillation because of the focusing system. These 
resonances can be clearly expressed in phase space 
because they are caused by external forces (see Fig. 2).  

 
Figure 2: Transverse phase portrait in case of 4th 
resonance for q-function with particle motion.  

CONCLUSIONS 
Using the isolated resonance approach, the theory 

allowing to predict the halo stabilization due to non-linear 
features of the space charge resonance was developed. 
The analytical formula for the resonant deviation of 
particles in halo, explaining the numerical calculations, 
were obtained. 
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