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Abstract

Passive ferrite inserts were used to compensate the space
charge impedance in high intensity space charge dominated
accelerators. We study the narrowband longitudinal im-
pedance of these ferrite inserts. We find that the shunt
impedance and the quality factor for ferrite inserts are in-
versely proportional to the imaginary part of the permeabil-
ity of ferrite materials. We also provide a recipe for attain-
ing a truly passive space charge impedance compensation
and avoiding narrowband microwave instabilities.

INTRODUCTION

High intensity high power hadron accelerators serve im-
portant functions for neutron sources and muon and neu-
trino factories. They also have industrial applications in
power amplification and atomic transmutation. Particle
beams in high intensity accelerators encounter large longi-
tudinal and transverse space charge forces. The transverse
space charge force can be alleviated by careful design of
the accelerator lattice and a proper choice of betatron tune
[1]. On the other hand, the longitudinal space charge force
of the beam tends to spread out the bunch distribution to
minimize the peak current. If longitudinal space charge is
not properly controlled, the beam bunch can fill the beam
gap, and this in turn leads to electron cloud instability for
high intensity beams.

At the PSR, experiments with such inductive inserts have
been performed [2]. With the inserts installed, the resulting
longitudinal impedance becomes
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where Z0 = 377Ω is the impedance of free space, g0 is
the geometry factor of the space charge impedance, L is
the effective inductance of the inductive inserts, a and b are
the inner and outer radii of the inductive inserts, µ is the
permeability of the ferrite material at low frequency, and �
is the total length of inductive inserts.

In 1999 three modules were installed in the PSR, and the
longitudinal microwave instability was observed to peak at
72.67 MHz or the n = 26 harmonic. Later it was found that
heating the ferrite to a temperature of 125◦C effectively al-
leviates this instability [3]. Two heated ferrite modules are
routinely used in high intensity operation. Although heat-
ing can change the properties of ferrite and provide a so-
lution to mitigate the narrowband impedance, it is not the
most desirable solution. It would be preferable to provide

∗Work supported in part by grants from the US Department of Energy:
US DOE DE-FG0292ER40747, and NSF PHY-0244793

a truly passive device to counteract the space charge im-
pedance. For this purpose, an analytic understanding of the
narrowband impedance of these ferrite cavities would be
helpful. This paper will carry out analytic calculation of
the TM010 mode impedance for these ferrite cavities.

FERRITE INSERTS

For this analytical model and its resulting calculations,
we follow the design of the ferrite modules installed in the
PSR. A module consists of 30 ferrite rings with inner diam-
eter 12.7 cm, outer diameter 20.3 cm, and thickness 2.54
cm. The ferrite cores line up end to end, so that one mod-
ule looks like a hollow cylinder of ferrite without end faces.
These modules can be treated as pillbox cavities.

The ferrite ring is cylindrically symmetric, we thus use
the cylindrical coordinate system. Since only the lon-
gitudinal particle motion concerns us, we consider only
the fundamental TM010 mode, where the electric field is
independent of the longitudinal coordinate s. In a uni-
form isotropic medium, the electromagnetic wave with
ejωt obeys Maxwell’s equation:
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in both free space and the ferrite region. Here, µ and ε are
permeability and permittivity of the uniform and isotropic
medium. The ferrite cavity can be divided into two regions
transversally: (1) free space in r ∈ (0, a), ferrite region
in r ∈ (a, b). A cylindrical conducting beam pipe at r =
b encases the ferrite rings and is assumed to be a perfect
conductor.

In vacuum, the wavenumber is k = ω
√

µ0ε0 = ω
c , and

the electromagnetic fields are

Es = E0J0(kr), Hφ = j
E0

µ0c
J1(kr).

The longitudinal electric and azimuthal magnetic fields de-
pend only on radial distance for the 010 mode.

In the ferrite region,the wavenumber k becomes
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√
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√
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where εr is the relative permittivity and µ
′

and µ
′′

are the
real and imaginary parts of the complex relative permeabil-
ity, respectively. The intrinsic characteristic impedance of

the ferrite medium is Zc =
√
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in the ferrite are
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Figure 1: Real and imaginary parts of the complex perme-
ability at different frequencies (From Chris Beltran [3].)

where H
(1)
n and H

(2)
n are Hankel functions with asymptotic

waves ejkcr and e−jkcr respectively. The parameters A,B
and kc are determined by the boundary conditions:

AH
(1)
0 (kcb) + BH

(2)
0 (kcb) = 0

Es(a−) = Es(a+), Hφ(a−) = Hφ(a+).

To calculate the longitudinal impedance, the general for-
mula is ∆V = −IZ‖ = −Es�, where Es is the longitudi-
nal electric field and � is the total length. Using Ampere’s
law, I =

∮
Hdl = 2πaHφ, we obtain

Z‖
�

= − Es

2πaHφ
= − µ0cJ0(ka)

2πajJ1(ka)
(3)

Here the relation between J0(ka) and J1(ka) is obtained
by the continuity conditions. This formula gives the im-
pedance per unit length on the axis of the cavity as a func-
tion of frequency, which is embedded in the kc.

In general, the permeability of all ferrite materials is a
complicated function of frequency. Figure 1 shows the
“derived” relative permeability as a function of frequency
for Ni-Zn ferrite cores M4C21A [3]. C. Beltran has ob-
tained these values of the complex permeability by fitting
the measured S11 parameter of the two-port network driven
by source frequencies spanning 0 to 120 MHz [3]. Since
the complex permeability is measured and analyzed at a
discrete number of frequencies, we approximate the in-
termediate frequencies by linear interpolation as shown in
Fig. 1.

Figure 2 compares the impedance per unit length and
per unit harmonic of our model and those obtained by the
MAFIA code [3]. The real and imaginary curves from the
model and from C. Beltran agree quite well in shape and
peak location but differ slightly in magnitude. Overall there
is good agreement.

Figure 2: Comparison of real and imaginary impedances
from the model and Chris Beltran’s MAFIA calculations
shown as circles and X’es. In this calculation, the ferrite
ring parameters are a = 6.35 cm, b = 10.15 cm, at room
temperature of 25◦C.

PROPERTIES OF THE IMPEDANCE FOR
THE FERRITE INSERT

Since our model calculation agrees well with the numer-
ical calculation of MAFIA, we can study general proper-
ties of the ferrite inserts. With the definition of the Hankel
function, the impedance can be expressed as

Z‖
�

= j
Zc

2πa

J0(kcb)Y0(kca)− J0(kca)Y0(kcb)
J0(kcb)Y1(kca)− J1(kca)Y0(kcb)

, (4)

where Jn(z) and Yn(z) are Bessel and Neumann functions
and kc = (ω/c)

√
εr(µ′ − jµ′′). The relative permittiv-

ity of the ferrite is fixed at εr = 15, and the permeability
is shown in Fig. 1. The impedance in Eq. (4) has a max-
imum at a resonance condition given by the zeros of the
denominator. Figure 3 shows the impedances for the outer
radii b = 10 cm, 11 cm, 12 cm, and 12.5 cm respectively.
We note that as the outer radius increases, the resonance
frequency is shifted lower, and the peak of impedance be-
comes much larger.

Near the resonance frequency, the magnitude of the nu-
merator is nearly constant, while the real part of the denom-
inator vanishes at the resonance. The resulting impedance
can be fitted by an RLC-circuit model:

Z

n�
=

ω0

ω

Rsh

1 + jQ(ω/ωr − ωr/ω)
. (5)

Both the shunt impedance Rsh and the quality factor Q are
inversely proportional to the imaginary part of the perme-
ability.

APPLICATIONS

The passive inductive insert concept is a very useful
method to combat the large space charge impedance for
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Figure 3: Impedance per unit length per harmonic is cal-
culated for ferrite cores with inner radius 6 cm and outer
radii 10, 11, 12, and 12.5 cm. Note that the peak frequency
is lowered, and the magnitude of the impedance becomes
larger as the outer radius of the ferrite core increases.

high intensity low energy accelerators. Since the actual
experiment indicates that the narrowband impedance can
induce microwave instability and cause beam loss, it be-
comes important to find a possible solution to de-Q these
inductive inserts.

We note that the ferrite cavities installed in the PSR have
an impedance of about Rsh ≈ 6.5 kΩ and Q ≈ 3.5. To
de-Q these cavities, we can install cavities with different
geometry. We note that the cavities with outer radii b larger
than 11 cm have Q values much too large for compensation.
Furthermore, the resonance frequency for b larger than 11
cm does not vary as much and thus does not de-Q as easily.
The most beneficial solution is to install cavities with 10
cm, 9.5 cm and 9.0 cm outer radii.

To avoid microwave instability induced by a narrowband
resonance, the stability threshold of the UV diagram is a
useful indicator, where one defines

U ′ + jV ′ =
eI0(Z||/n)

β2Eδ2
FWHM|η|

= Γ
Z‖
n

. (6)

Using the parameters of PSR: beam energy E = 1.736
GeV (β = 0.84), the peak current I0 = 74 A for 9.0 µC cir-
culating charge with 290 ns bunch length, Vrf = 14 kV, the
phase slip factor of |η| = 0.185, the FWHM beam momen-
tum spread for a Gaussian beam of δFWHM =

√
8 ln 2σδ

with σδ = 2.66 × 10−3, we obtain Γ = 8.35 × 10−3.
Assuming the geometry factor g0 = 3, the space charge
impedance is Zsc = −j196 Ω. Figure 4 plots V ′ vs. U ′

parameters for various geometric combination of ferrite in-
serts. Points that fall inside the stability curve will be sta-
ble, while points that fall outside the curve will be unstable.

Figure 4: Stability comparison of different core thickness
for a Gaussian beam. The U ′ and V ′ parameters for the 3
room-temperature ferrite inserts (2.286 m) are plotted as
circle symbols. The U ′ and V ′ of the 2 heated ferrite-
inserts (1.524 m) are plotted as cross symbols. The dotted
line corresponds to a 2.0 m ferrite insert of b = 9.0 cm
and 10 cm in 5:1 ratio. The blue solid line corresponds to
a de-Qed 3:2:1 combination of 9.0 cm, 9.5 cm, and 10 cm
core inserts of a total length of 2.0 m. The red dashed line
corresponds to an instability growth rate of 0.4 ms. The red
line indicates the stability region.

CONCLUSION AND DISCUSSIONS

With this analytic model, we have conducted a system-
atic study of the properties of ferrite inserts with differ-
ent geometries. We find that the shunt impedance and the
quality factor of the TM010 mode are inversely propor-
tional to the imaginary part of the permeability. We also
find that the resonance condition is approximately given by
|kc|(b−a) ≈ 2, where kc = (ω/c)

√
εr(µ′ − jµ′′). In fact,

these properties can be used to determine the permeabil-
ity of ferrite materials by carrying out impedance measure-
ments of ferrite cores. Careful calculation before imple-
menting the space charge compensation would be impor-
tant in minimizing agonizing side effects of passive com-
pensation encountered in the PSR. It is indeed possible to
produce fixed ferrite inserts, and install them in a high in-
tensity low energy ring for passive space charge compen-
sation without heating the ferrite.
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