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Abstract

Transverse instability of a rectangular bunch is investi-
gated. Known theory of bunched beam instability is mod-
ified to take into account 100% spread of synchrotron fre-
quency. Series of equations adequately describing the in-
stability is derived and solved analytically and numerically.
The theory is applied to the Fermilab Recycler Ring.

INTRODUCTION

Transverse beam instability – probably resistive wall
type – is observed sometimes in the Fermilab Recycler
Ring [1, 2]. A damper is designed now to avoid problems at
planed increase of the Recycler intensity. It should be taken
into account that, typically, the Recycler beam is bunched
longitudinally by a barrier-bucket rf waveform. Therefore
the bunch has almost rectangular shape, synchrotron fre-
quency is rather low and has 100% spread. One would ex-
pect that instability of such beam is a cross between a coast-
ing beam and “normal” bunched beam. Theoretical inves-
tigation of this problem and development of requirements
to the damper is the main subject of this paper. In doing so,
we neglect moderate effects of penetration of particles into
the barriers, and nonlinearity of betatron oscillations.

BASIC EQUATIONS

Let us consider transverse dipole moment of a beam
D(θ) exp (−iωt) where θ is azimuth in a rest frame. Its
Fourier harmonics satisfy the set of equations (see e.g. [3]):

Dk =
i r0ω0N

2πγQ0Z0

∑

k′
Ck,k′Dk′Z⊥k′ (1)

Ck,k′ =
∑

m

∞∫

0

Im,k(ε)I∗m,k′(ε)F (ε) dε
ω + ω0Q0 −mΩ

(2)

where N is the beam intensity, ω0 and Q0 are aver-
age angular velocity and betatron frequency, ε and Ω(ε) –
action and frequency of synchrotron oscillations, F (ε) –
normalized distribution function, Z⊥

k – transverse beam
coupling impedance [4], r0 = e2/mc2 � 1.535 ×
10−16 cm, Z0 = 4π/c � 376.7 Ohm. General formula
for form-factors Im,k is

Im,k(ε) =
1
2π

π∫

−π
eimφ−iλθ(ε,φ) dφ (3)
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where λ = k − Q0 + ξ/η, ξ and η are chromaticity and
slippage factor, and azimuth θ is presented as a function of
action and phase of synchrotron oscillations.
In a rectangular potential wall of the length θ0, θ =

2B|φ|, ε = 4πB|p− p0|, and

Ω =
ω0| η(p− p0)|

2p0B
=

ω0ε|η|
8πp0B2

(4)

where p and p0 are the particle momentum and central one,
and B = θ0/2π is a bunch factor. Then formula (3) gives:

Im,k =
ψm,k + πm/2
ψm,k + πm

sinψm,k
ψm,k

eiψm,k (5)

where ψm,k = π(Bλ −m/2 ). The sum overm in Eq. (2)
is calculated analytically in this case providing general for-
mula for the matrixCk,k′ . However, it is very cumbersome;
therefore we will restrict our consideration to the required
specific cases.

LOW SYNCHROTRON FREQUENCY

As the first approximation, consider the case when both
η and Ω→0. It is reasonable because typical synchrotron
frequency in the Recycler is several Hz whereas the space
charge tune shift can reach several hundred Hz. The result
is: 1

Ck,k′ = Nk−k′

∞∫

−∞

F(p) dp
ω + ω0Q(p)

(6)

whereF(p) is normalized distribution function on momen-
tum,Q(p) = Q0 + ξ(p−p0)/p0 is the momentum depend-
ing tune, and

Nl =
sin (πlB)
πlB

eiπlB (7)

is Fourier harmonic of normalized beam density which is
1/B in the potential wall. Therefore dispersion equation
of the instability can be written in the form:

1 =
i r0ω0NZ

(ef)

2πγQ0Z0

∞∫

−∞

F(p) dp
ω + ω0Q(p)

(8)

what is quite similar to the equation for a coasting beam
at η = 0. The only distinction is a replacement of the
beam coupling impedance Z⊥k by an effective impedance
Z(ef) which is defined here as any eigenvalue of the prob-
lem:

Z(ef)Dk =
∑

k′
Nk−k′Z⊥k′Dk′ (9)

At B = 1, the distinction entirely disappears because
Z(ef) = Z⊥k at Nk−k′ = δk,k′ . Some results of numerical
solution at B �= 1 are represented below.

1Note that it would wrong simply to take Ω = 0 in Eq. (2) because
parameter λ→∞ at the same time.
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Figure 1: Real part of the effective resistive wall impedance

Resistive wall impedance

First example considered is resistive wall impedance:

Z⊥k = Z(rw) sgn(κ)− i√|κ| (10)

where κ = k+ω/ω0 � k−Q0 is normalized frequency in
the laboratory frame [4]. Real parts of the eigenvalues are
presented in Fig. 1 at Z (rw)=1, Q0 = 0.425, and differ-
ent B. They are arranged in order of decreasing absolute
value, what in practice is the same as increasing number of
central harmonic of the spectrum. At B = 1, the numeri-
cal solution coincides with analytical solution of a coasting
beam. Note that approximate dependence of varied eigen-
values on bunch factor is between B−0.3 – B−0.5.

Exponential wake

Another important case is the impedance

Z⊥k =
Z(ex)

1− i ακ
(11)

corresponding an exponentially decreasing wake field. It
turns out that in this case Z (ef)

k = Z⊥k regardless the bunch
factor, though the eigenfunctions essentially depend on B
(the result is obtained both analytically and numerically).

Resistive wall and damper

Combining Eq. (10) and (11) with real negative Z (ex), one
can get a model of an accelerator with a resistive wall and
simplest wide-band damper:

Z⊥k = Z(rw)

(
sgn(κ)− i√|κ| − g

1− i ακ

)
(12)

Solution at Q0 =0.425, Z(rw) =1, α=0.04, g = 1.32 2

is illustrated by Fig. 2 where the eigenvalues multiplied on
B are placed in complex plain. It is seen that their abso-
lute value increases at the bunching not faster than 1/B.
It is seen also that Re Z(ef) > 0 for higher modes what
means that the beam is potentially unstable on high fre-
quency even with such a damper.

2At this g andQ0, the damper exactly suppresses real part of the most
dangerous resistive wall harmonic k = 1.
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Figure 2: An accelerator with resistive walls and minimal
damper: effective impedance multiplied on bunch factor.

UNIFORM BEAM

The mentioned instability can be suppressed by Lan-
dau damping owed its origin to spread of incoherent fre-
quency. According to Eq. (8), only chromaticity gives a
contribution to the spread what would restricts scopes of
the method. However, it is a premature conclusion be-
cause slippage factor was neglected in those consideration.
Doubtless, the factor is especially important at the analysis
of higher modes determining requirements to the damper.
In this part we can restrict ourself by the caseB = 1what

means a uniform (not a coasting!) beam. Indeed, it follows
from previous that, at adiabatic compression of the beam,
the effective impedance increases not faster than momen-
tum and frequency spread, i.e. ∝ 1/B. That is true if the
space charge impedanceZ⊥k = iZ(sc) is taken into account
also, adding iZ (sc)/B to any eigenvalue of Eq. (9). There-
fore the beam is most unstable at B = 1 what case forms
the requirements to the damper. Then the matrix Ck,k′ is:

Ck,k′= δk,k′

∞∫

−∞

F(p) dp
ω + ωrev(p)Q(p) + kω0η(p−p0)/p0

(13)

+

∞∫

−∞

[ν + 2(λ+ λ′)Ω][cos (2πλ)− cos (πν/Ω)]
π[λ+ λ′][ν + 2λΩ][ν + 2λ′Ω] sin (πν/Ω)

F(p) dp

First part of the formula coincides with similar expression
for a coasting beam and corresponds to an approximation
of separated harmonics in Eq. (1). Second part owed its
origin to the reflection of the particles from the walls is
small because the integrand is fast oscillating function at
low synchrotron frequency. We can consider it as a small
addition to determine limits of applicability of the coasting
beam approximation. Then the dispersion equation is:

i r0ω0NZ
⊥
k Ck,k

2πγQ0Z0
= 1 (14)

Further we will consider Gaussian distribution on momen-
tum with dispersion σp, and rewrite Eq. (14) in the form:

2πiγ|ηλ|Q0σpZ0

r0Np0Z⊥k
=

1√
2π

∞∫

−∞

e−x
2/2

x− xω
× (15)
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Figure 3: Threshold diagram of a coasting beam and
bunched beam at B = 1.

(
1 +

[2x− xω ][cos (2πλ)− cos (2πλxω/x)]
2πλ[x− xω] sin (2πλxω/x)

)
dx

where

xω =
(ω + ω0Q0)p0

ω0σp|ηλ| (16)

The integral can be used to draw a threshold diagram i.e. a
mapping of line Im xω → +0 on a complex plane. Right-
hand part of this symmetric curve is plotted in Fig. 3 at
several λ. It is seen that the coasting beam approximation
is acceptable at least at λ > 10. Additionally, one can use
the formula:

1√
2π

∞∫

−∞

e−x
2/2

x− xω
dx � xω

x2
ω − 1

+ i

√
π

2
e−x

2
ω/2 (17)

which provides rather good accuracy at xω > 2. Then, for
frequent case of dominated space charge impedance, the
dispersion equation can be put in a more convenient form:

r0p0NZ
(sc)

2πγσpQ0Z0|(k −Q0)η + ξ| =
x2
ω − 1
xω

(18)

ReZ⊥k
Z(sc)

=
√
π

2
x2
ω − 1
xω

e−x
2
ω/2 (19)

Left-hand part of Eq. (18) is simply the ratio of r.m.s. fre-
quency spread to the space charge tune shift. Right-hand
part should be determined by solution of Eq. (19) typically
being about 3 – 5. After that, threshold of instability of k-
th harmonic can be found from Eq. (18). Minimal of the
partial thresholds is the ultimate intensity of the beam.

RECYCLER DAMPER

Now we are applying the results obtained to deter-
mine requirements to the Recycler damper. The follow-
ing parameters are used: γ = 9.526, Q0 = 25.425, η =
−0.00851, Z(rw)=18MOhm/m (stainless steel pipe 9.8×
4.6 cm2). Space charge impedance is taken as large as 500
MOhm/m corresponding normalized transverse emittance
1π mm-mrad. Longitudinal r.m.s. emittance is 15 eV-s
corresponding σp = 0.678 MeV/c. Total impedance is
calculated by Eq. (12) at g = 2.64 what is double mini-
mal gain. Results of are presented in Fig. 4 where thresh-
old of instability is plotted against the cromaticity and the
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Figure 4: Threshold of instability in the Recycler. Numbers
mean the damper bandwidth in MHz (0 – no damper).

damper bandwidth W = ω0/2πα. Without the damper
and at nominal chromaticity ξ = −2, the threshold is about
3× 1011 what is confirmed by experiment [2]. At zero cro-
maticity, the threshold is less by factor ∼ 400. Above the
threshold, increment of the lower unstable mode is:

Im ω � 37× 10−12NB−1/3 (s−1)

what concurs with experiment also. A planed intensity
6 × 1012 can be reached with 18 MHz damper at nominal
chromaticity and with 13 MHz one at chromaticity−10.

CONCLUSION

Modification of general theory of bunched beam trans-
verse instability allows to get simpler equations for a rect-
angular bunch. Their numerical solution shows that, at
given longitudinal emittance, the bunch is most inclined to
the instability at B = 1. In this case there is no big differ-
ence between barrier-bunched and coasting beam, at least
for high harmonics and/or at small slippage factor. The
techniques developed is applied to explain transverse beam
instability in the Fermilab Recycler Ring, and to develop
requirements to its damping system. It is shown that the
damper bandwidth about 20MHz is enough to reach planed
beam intensity 6× 1012 ppp at nominal chromaticity.
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