A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Zou, Y.

Paper Title Page
TPAT067 Study of Longitudinal Space-Charge Wave Dynamics in Space-Charge Dominated Beams 3712
 
  • K. Tian, Y. Cui, I. Haber, Y. Huo, R.A. Kishek, P.G. O'Shea, Y. Zou
    IREAP, College Park, Maryland
  • M. Reiser
    University Maryland, College Park, Maryland
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science.

Understanding the dynamics of longitudinal space- charge waves is very important for advanced accelerator research. Although analytical solutions of space-charge wave equations based on the cold fluid model exist in one dimension, there are few results for two-dimensional wave evolution. One-dimensional theory predicts two eigen solutions, given an initial perturbation. One is called the fast wave, which moves toward the beam head in the beam frame and the other is termed the slow wave, which moves backward in the beam frame. In this paper, we report experimental results of space charge wave studies conducted on a 2.3 meter long straight beam line at the University of Maryland. An energy analyzer is used to directly measure the energy of space-charge waves at the end of the transport line, which demonstrates the decomposition of an initial current perturbation into a slow wave and a fast wave. A PIC code, WARP [1], is used to simulate this experiment and the behavior of longitudinal waves in space-charge dominated beams in an R-Z geometry. Simulations shown here also demonstrate if the initial current and velocity perturbation strengths are chosen properly, only fast or slow waves could be selectively generated.

 
TPPE046 Computer Simulation of the UMER Gridded Gun 2908
 
  • I. Haber, S. Bernal, R.A. Kishek, P.G. O'Shea, Y. Zou
    IREAP, College Park, Maryland
  • A. Friedman, D.P. Grote
    LLNL, Livermore, California
  • M. Reiser
    University Maryland, College Park, Maryland
  • J.-L. Vay
    LBNL, Berkeley, California
 
  Funding: This work is supported by the U.S. DOE under contract Nos. DE-FG02-02ER54672 and DE-FG02-94ER40855 at the UMD, and DE-AC03-76SF00098 at LBNL and W-7405-ENG-48 at LLNL.

The electron source in the University of Maryland Electron Ring (UMER) injector employs a grid 0.15 mm from the cathode to control the current waveform. Under nominal operating conditions, the grid voltage during the current pulse is sufficiently positive relative to the cathode potential to form a virtual cathode downstream of the grid. Three-dimensional computer simulations have been performed that use the mesh refinement capability of the WARP particle-in-cell code to examine a small region near the beam center in order to illustrate some of the complexity that can result from such a gridded structure. These simulations have been found to reproduce the hollowed velocity space that is observed experimentally. The simulations also predict a complicated time-dependent response to the waveform applied to the grid during the current turn-on. This complex temporal behavior appears to result directly from the dynamics of the virtual cathode formation and may therefore be representative of the expected behavior in other sources, such as some photoinjectors, that are characterized by a rapid turn-on of the beam current.