A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Zhao, Q.

Paper Title Page
TPPE013 Simulations of Solenoid and Electrostatic Quadrupole Focusing of High Intensity Beams from ECR Ion Source at NSCL 1336
 
  • Q. Zhao, A.I. Balabin, M. Doleans, F. Marti, J.W. Stetson, X. Wu
    NSCL, East Lansing, Michigan
 
  Solenoidal focusing has been widely used to focus beams at various injectors for its axisymmetric focusing with reasonable effectiveness. Experiments and simulations have shown that space charge effects can significantly deteriorate the beam quality when solenoidal focusing is used in a multi-component beam. This is due to the magnetic focusing strength dependence on the beam charge-to-mass ratio. Electrostatic quadrupole focusing has been explored as an alternate option at NSCL for the injection line of the superconducting cyclotron. We present in this paper the results of simulations for both systems. The electrostatic quadrupoles have been optimized to reduce the radial dependent aberrations and to increase the transmission efficiency.  
FPAT088 Advanced Beam-Dynamics Simulation Tools for RIA 4218
 
  • R.W. Garnett, J.A. Billen, T.P. Wangler
    LANL, Los Alamos, New Mexico
  • K.R. Crandall
    TechSource, Santa Fe, New Mexico
  • P.N. Ostroumov
    ANL, Argonne, Illinois
  • J. Qiang, R.D. Ryne
    LBNL, Berkeley, California
  • R.C. York, Q. Zhao
    NSCL, East Lansing, Michigan
 
  Funding: U.S. Department of Energy Contract W-7405-ENG-36.

We are developing multuparticle beam-dynamics simulation codes for RIA driver linac simulations extending from the low-energy beam transport line to the end of the linac. These codes run on the NERSC parallel supercomputing platforms at LBNL, which allow us to run simulations with large numbers of macroparticles. The codes have physics capabilities needed for RIA, including transport and acceleration of multiple-charge-state beams, beam-line elements such as high-voltage platforms within the linac, interdigital accelerating structures, charge-stripper foils, and capabilities for handling the effects of machine errors and other off-normal conditions. In this paper we present the status of the work, describe some recent additions to the codes, and show preliminary end-to-end simulation results for a representative driver-linac design.