A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Zhang, Z.

Paper Title Page
TPAE030 Distributed Bragg Coupler for Optical All-Dielectric Electron Accelerator 2125
 
  • Z. Zhang, R.D. Ruth, S.G. Tantawi
    SLAC, Menlo Park, California
 
  Funding: Department of Energy.

A Bragg waveguide consisting of multiple dielectric layers with alternating index of refraction becomes an excellent option to form electron accelerating structure powered by high power laser sources. It provides confinement of a synchronous speed-of-light mode with extremely low loss. However, laser field can not be coupled into the structure collinearly with the electron beam. There are three requirements in designing input coupler for a Bragg electron accelerator: side-coupling, selective mode excitation, and high coupling efficiency. We present a side coupling scheme using a Bragg-grating-assisted input coupler to inject the laser into the waveguide. Side coupling is achieved by a second order Bragg grating with a period on the order of an optical wavelength. The phase matching condition results in resonance coupling thus providing selective mode excitation capability. The coupling efficiency is limited by profile mismatch between the outgoing beam and the incoming beam, which has normally, a Gaussian profile. We demonstrate a non-uniform distributed grating structure generating an outgoing beam with a Gaussian profile, therefore, increasing the coupling efficiency.