A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Zadorozhny, V.

Paper Title Page
TPAT040 Actual Stationary State for Plasma Lens 2619
 
  • V. Zadorozhny
    NASU/IOC, Kiev
  • A. Goncharov
    NSC/KIPT, Kharkov
  • Z.P. Parsa
    BNL, Upton, Long Island, New York
 
  The electrostatic plasma lens (PL) provides an attractive and unique tool for manipulating high-current heavy ion beams. The fundamental concept of the PL is based on the use of magnetically insulated electrons and equipotentialization of magnetic field lines. Rigorous application of PL is, however, limited. The reason is the estimation behaviour of electrons for complicated magnetic fields runs into severe difficults.We show that there are specific conditions that admit steady-state of a longitudinal motion, and consider a question of it stability. These results are needed to develop an optimized PL with minimal spherical aberation, in party by optimization of the magnetic field conficuration in the low-magnetic-field range.  
TPAT041 On the Vlasov-Maxwell Equations 2654
 
  • V. Zadorozhny
    NASU/IOC, Kiev
  • Z.P. Parsa
    BNL, Upton, Long Island, New York
 
  There are many interesting physical question which based on of the solution Vlasov-Maxwell Equation (VME). However, the procedure of solve is very difficult and hard. But it is often preferable, on physical grounds, to a common point of view. Such point of view maybe a structure of some solution. We define and discuss the notaion of structure for the distribution function and prove, the structure of the Lorentz force represent the structure of the one. At the time of the discovery of the integrable systems the question of VME integrability had been considered. Moreover, as example, we consider, by means of this approach, the relation integrability and dispersion with a spectra of Vlasov's operat.