A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Xiao, L.

Paper Title Page
TPPE058 Dual Feed RF Gun Design for the LCLS 3432
 
  • L. Xiao, R.F. Boyce, D. Dowell, Z. Li, C. Limborg-Deprey, J.F. Schmerge
    SLAC, Menlo Park, California
 
  Funding: Work supported by the U.S. DOE under contract DE-AC03-76SF00515.

In order to remove the dipole field introduced by the coupler in existing S-band BNL/SLAC/UCLA 1.6 cell rf gun, a dual feed design for the LCLS RF gun is proposed together with several significant changes. The improvements include adopting Z-coupling instead of ?-coupling for easier machining and reducing heating, increasing the 0-and ?-mode separation from 3.4 to 15 MHz to reduce the amplitude of the 0 mode, incorporating race-track cavity shape to minimize the quadruple fields, increased cooling for operation at 120Hz and other small changes to improve performance and diagnostic capabilities. The new design has been modeled with the parallel finite element eigenmode solver Omega3P to provide the desired RF parameters and to generate the gun cavity dimensions needed for fabrication.

 
TPPT031 Coupler Design for the LCLS Injector S-Band Structures 2176
 
  • Z. Li, L.D. Bentson, J. Chan, D. Dowell, C. Limborg-Deprey, J.F. Schmerge, D.C. Schultz, L. Xiao
    SLAC, Menlo Park, California
 
  Funding: Work supported by the U.S. DOE Contract No. DE-AC03-76SF00515.

The LCLS injector is required to provide a 1-nC, 10-ps bunch with a normalized rms transverse projected emittance of less than 1.0-μm. The LCLS beam is generated and accelerated in a 1.6-cell S-band RF gun to 6-MeV followed by two SLAC 3-m S-band accelerator structures to further accelerate the beam to 135 MeV to move it out of the space-charge dominated regime. In the SLAC S-band structures, the RF power feed is through a single coupling-hole (single-feed coupler) which results in a field asymmetry. The time dependent multipole fields in the coupler induce a transverse kick along the bunch and cause the emittance to increase above the LCLS specification. To meet the stringent emittance requirements for the injector, the single-feed couplers will be replaced by a dual-feed racetrack design to minimize the multipole field effects. We will present detailed studies of the multipole fields in the S-band coupler and the improvements with the dual-feed racktrack design using the parallel finite element eigenmode solver Omega3P.

 
TPPT032 Modifications on RF Components in the LCLS Injector 2233
 
  • C. Limborg-Deprey, D. Dowell, Z. Li, J.F. Schmerge, L. Xiao
    SLAC, Menlo Park, California
 
  Funding: This work was supported by U.S. Department of Energy, contract No. DE-AC03-76SF00515A06.

Design of the first generation LCLS injector has now been completed. Components are currently under fabrication and their installation is planned for 2006. We discuss the last modifications made on both the 1.6 cell S-Band RF gun and the SLAC S-Band accelerating structures to minimize the beam emittance. We present results from PARMELA computations which justify those modifications, in particular the suppression of the time dependent dipole and quadrupole kicks. Geometry changes to increase the mode separation between the 0 and PI modes are also presented. For the initial geometry with a mode separation of 3.5MHz, the emittance can increase if the appropriate injection time along the klystron pulse is not chosen. For a mode separation of 15MHz, this problem is minimized and the beam dynamics are improved leading to a substantial reduction of total projected emittance.

 
TPPT056 Design of a Low Loss SRF Cavity for the ILC 3342
 
  • J.S. Sekutowicz
    DESY, Hamburg
  • L. Ge, K. Ko, L. Lee, Z. Li, C.-K. Ng, G.L. Schussman, L. Xiao
    SLAC, Menlo Park, California
  • I.G. Gonin, T.K. Khabiboulline, N. Solyak
    Fermilab, Batavia, Illinois
  • P. Kneisel
    Jefferson Lab, Newport News, Virginia
  • Y. Morozumi, K. Saito
    KEK, Ibaraki
 
  An international team comprising DESY, KEK, JLAB, FNAL and SLAC is collaborating on the design, fabrication and test of a low loss, 1.3 GHz 9-cell SRF structure as a potential improvement for the ILC main linac. The advantages of this structure over the TTF structure include lower cryogenic loss, shorter rise time, and less stored energy. Among the issues to be addressed in this design are HOM damping, Lorentz force detuning and multipacting. We will report on HOM damping calculations using the parallel finite element eigenmode solver Omega3P and the progress made towards an optimized design. Studies on multipacting and estimates of the Lorentz force detuning will also be presented.