A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Wolbers, S.A.

Paper Title Page
TOPC004 Tevatron Beam Position Monitor Upgrade 410
 
  • S.A. Wolbers, B. Banerjee, B. Barker, S. Bledsoe, T. Boes, M. Bowden, G.I. Cancelo, G. Duerling, B. Forster, B. Haynes, B. Hendricks, T. Kasza, R.K. Kutschke, R. Mahlum, M.A. Martens, M. Mengel, M. Olsen, V. Pavlicek, T. Pham, L. Piccoli, J. Steimel, K. Treptow, M. Votava, R.C. Webber, B. West, D. Zhang
    Fermilab, Batavia, Illinois
 
  Funding: Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy.

The Tevatron Beam Position Monitor (BPM) readout electronics and software have been upgraded to improve measurement precision, functionality and reliability. The original system, designed and built in the early 1980s, became inadequate for current and future operations of the Tevatron. The upgraded system consists of 960 channels of new electronics to process analog signals from 240 BPMs, new front-end software, new online and controls software, and modified applications to take advantage of the improved measurements and support the new functionality. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton position measurements. Measurements using the new system are presented that demonstrate its improved resolution and overall performance.

 
RPAT011 Digital Signal Processing the Tevatron BPM Signals 1242
 
  • G.I. Cancelo, E. James, S.A. Wolbers
    Fermilab, Batavia, Illinois
 
  Funding: Fermilab

The Beam Position Monitor (BPM) readout system at Fermilab’s Tevatron has been updated and is currently being commissioned. The new BPMs use new analog and digital hardware to achieve better beam position measurement resolution. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton position measurements. The signals provided by the two ends of the BPM pickups processed by analog band-pass filters and sampled by 14-bit ADCs at 74.3MHz. A crucial part of this work has been the design of digital filters that process the signal. This paper describes the digital processing and estimation techniques used to optimize the beam position measurement. The BPM electronics must operate in narrow-band and wide-band modes to enable measurements of closed-orbit and turn-by-turn positions. The filtering and timing conditions of the signals are tuned accordingly for the operational modes. The analysis and the optimized result for each mode is presented.

 
RPAT018 Simultaneous Position Measurements of Protons and Anti-Protons in the Tevatron 1613
 
  • R.K. Kutschke, J. Steimel, R.C. Webber, S.A. Wolbers
    Fermilab, Batavia, Illinois
 
  Fermilab has embarked upon a program to upgrade the electronics of the Beam Position Monitor (BPM) system that measures the transverse position of the beams inside the Tevatron collider. The new system improves on the current system in precision, accuracy and reliability. A new feature in the upgraded system is the ability, when both protons and anti-protons are present in the Tevatron, make simultaneous measurements of the closed orbit position of both beam species. The method chosen for achieving the simultaneous measurement is an algorithm that deconvolutes the imperfect directionality of the BPM pickups from the raw measurements. This paper will discuss the algorithm, the calibration of the parameters used by the algorithm and the robustness of the algorithm. It will also present results from the upgraded system which demonstrate that the system meets the requirements set out at the start of the upgrade project.