A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Weterings, W.J.M.

Paper Title Page
TPAP009 Collimation in the Transfer Lines to the LHC 1135
 
  • H. Burkhardt, B. Goddard, Y. Kadi, V. Kain, T. Risselada, W.J.M. Weterings
    CERN, Geneva
 
  Injection intensities for the LHC are over an order of magnitude above damage level. The TI 2 and TI 8 transfer lines between the SPS and LHC are each about 2.5 km long and comprise many active elements running in pulsed mode. The collimation system in the transfer lines is designed to dilute the beam energy sufficiently in case of accidental beam loss or mis-steered beam. A system using three collimator families spaced by 60 degrees in phase advance, both in the horizontal and the vertical plane has been chosen. We discuss the reasons for this choice, the layout and, the expected performance of the system in terms of maximum amplitudes and energy deposition.  
TPAP013 The Performance of the New TCDQ System in the LHC Beam Dumping Region 1324
 
  • A. Presland, B. Goddard, W.J.M. Weterings
    CERN, Geneva
 
  The superconducting quadrupole magnet Q4 in IR6 and other downstream LHC machine elements risk destruction in the event of a beam dump that is not synchronised with the abort gap. In order to protect these elements, a single sided mobile graphite diluter block TCDQ, in combination with a two-sided secondary collimator TCS and an iron shield TCDQM, will be installed in front of Q4. This protection system should also intercept spurious particles in the beam abort gap to prevent quenches from occurring during regular beam aborts, and must also intercept the particles from the secondary halo during low beam lifetime without provoking quenches. The conceptual design of the TCDQ system is briefly presented, with the load conditions and performance criteria. The FLUKA energy deposition simulations are described, and the results discussed in the context of the expected performance levels for LHC operation.