A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Wang, J.Q.

Paper Title Page
MPPP026 Development of Longitudinal Coupling Impedance Measurement Platform for BEPCII 1940
 
  • G. Huang, W.-H. Huang, S. Zheng
    Tsinghua University, Beijing
  • J.Q. Wang, D.M. Zhou
    IHEP Beijing, Beijing
 
  Funding: Supported by NSFC 10375035.

A coaxial line impedance measurement platform is developed for BEPCII. A pair of gradual change impedance matching section is designed and fabricated by numerical control milling machine. The special designed RF connector is applied to strengthen the inner conductor. The algorithm of TRL calibration is applied in the system to avoid the usage of a reference pipe for each device under test. The measurement is accomplished by a VNA under the control of the software written in LabView.

 
MPPP052 Longitudinal Impedance Measurements of the Components for the BEPCII 3212
 
  • D.M. Zhou, W. Kang, J.Q. Wang, L.J. Zhou
    IHEP Beijing, Beijing
  • G. Huang
    TUB, Beijing
 
  Funding: Work supported by the National Natural Science Foundation of China (NSFC) under contract No.10375076.

A longitudinal impedance measurement system was established for the BEPCII. The measurements, done in the frequency domain, are based on the coaxial wire method using HP/Agilent 8720ES network analyzer. The applications of the TRL calibration technique and absorbers were investigated to find a good approach for impedance measurements. The impedance, larger than 20 Ohm and below 6 GHz, can be measured using the TRL calibration technique in the experiment. And better measurement results were got using the reference pipes with the absorbers. So, this system satisfies the requirements of the BEPCII. This paper gives a review on this impedance measurements system for the BEPCII. The measurements results show that there are no serious impedance problems for BEPCII bellows and injection kickers, agreeing well with the numerical simulations. More improvements on this system are in progress.

 
RPPP003 Proposal of the Next Incarnation of Accelerator Test Facility at KEK for the International Linear Collider 874
 
  • H. Hayano, S. Araki, H. Hayano, Y. Higashi, Y. Honda, K.-I. Kanazawa, K. Kubo, T. Kume, M. Kuriki, S. Kuroda, M. Masuzawa, T. Naito, T. Okugi, R. Sugahara, T. Tauchi, N. Terunuma, N. Toge, J.U. Urakawa, V.V. Vogel, H. Yamaoka, K. Yokoya
    KEK, Ibaraki
  • I.V. Agapov, G.A. Blair, G.E. Boorman, J. Carter, C.D. Driouichi, M.T. Price
    Royal Holloway, University of London, Surrey
  • D.A.-K. Angal-Kalinin, R. Appleby, J.K. Jones, A. Kalinin
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. Bambade
    LAL, Orsay
  • K.L.F. Bane, A. Brachmann, T.M. Himel, T.W. Markiewicz, J. Nelson, N. Phinney, M.T.F. Pivi, T.O. Raubenheimer, M.C. Ross, R.E. Ruland, A. Seryi, C.M. Spencer, P. Tenenbaum, M. Woodley
    SLAC, Menlo Park, California
  • S.T. Boogert, A. Liapine, S. Malton
    UCL, London
  • H.-H. Braun, D. Schulte, F. Zimmermann
    CERN, Geneva
  • P. Burrows, G.B. Christian, S. Molloy, G.R. White
    Queen Mary University of London, London
  • J.Y. Choi, J.Y. Huang, H.-S. Kang, E.-S. Kim, S.H. Kim, I.S. Ko
    PAL, Pohang, Kyungbuk
  • S. Danagoulian
    North Carolina A&T State University, Greensboro, North Carolina
  • N. Delerue, D.F. Howell, A. Reichold, D. Urner
    OXFORDphysics, Oxford, Oxon
  • J. Gao, W. Liu, G. Pei, J.Q. Wang
    IHEP Beijing, Beijing
  • B.I. Grishanov, P.L. Logachev, F.V. Podgorny, V.I. Telnov
    BINP SB RAS, Novosibirsk
  • J.G. Gronberg
    LLNL, Livermore, California
  • Y. Iwashita, T. Mihara
    Kyoto ICR, Uji, Kyoto
  • M. Kumada
    NIRS, Chiba-shi
  • S. Mtingwa
    North Carolina University, Chapel Hill, North Carolina
  • O. Napoly, J. Payet
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • T.S. Sanuki, T.S. Suehara
    University of Tokyo, Tokyo
  • T. Takahashi
    Hiroshima University, Higashi-Hiroshima
  • E.T. Torrence
    University of Oregon, Eugene, Oregon
  • N.J. Walker
    DESY, Hamburg
 
  The realization of the International Linear Collider (ILC) will require the ability to create and reliably maintain nanometer size beams. The ATF damping ring is the unique facility where ILC emittancies are possible. In this paper we present and evaluate the proposal to create a final focus facility at the ATF which, using compact final focus optics and an ILC-like bunch train, would be capable of achieving 35nm beam size. Such a facility would enable the development of beam diagnostics and tuning methods, as well as the training of young accelerator physicists.