A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Vincke, H.

Paper Title Page
TPAP005 Calculation of Residual Dose Rates and Intervention Scenarios for the LHC Beam Cleaning Insertions–Constraints and Optimization 940
 
  • M. Brugger, O. Aberle, R.W. Assmann, D. Forkel-Wirth, H.G. Menzel, S. Roesler, H. Vincke
    CERN, Geneva
 
  Radiation protection of the personnel who will perform interventions in the LHC Beam Cleaning Insertions is mandatory and includes the design of equipment and the establishment of work procedures. Residual dose rates due to activated equipment are expected to reach significant values such that any maintenance has to be planned and optimized in advance. Three-dimensional maps of dose equivalent rates at different cooling times after operation of the LHC have been calculated with FLUKA. The simulations are based on an explicit calculation of induced radioactivity and of the transport of the radiation from the radioactive decay. The paper summarizes the results for the Beam Cleaning Insertions and discusses the estimation of individual and collective doses received by personnel during critical interventions, such as the exchange of a collimator or the installation of Phase 2. The given examples outline the potential and the need to optimize, in an iterative way, the design of components as well as the layout of the beam cleaning insertions. Furthermore, results of measurements and simulations of residual dose rates for a collimator test recently performed at the SPS are presented.  
WPAE018 Performance Tests of Survey Instruments Used in Radiation Fields Around High-Energy Accelerators 1595
 
  • S. Mayer, D. Forkel-Wirth, M. Fuerstner, H.G. Menzel, S. Roesler, C. Theis, H. Vincke
    CERN, Geneva
 
  Measurements of ambient dose equivalent in stray radiation fields behind the shielding of high-energy accelerators are a challenging task. Several radiation components (photons, neutrons, charged particles), spanning a wide range of energies, contribute to the total dose equivalent. In routine-measurements, the total dose equivalent is obtained by the combination of several radiation detectors. Ionisation chambers, which are sensitive to all radiation components, are employed together with so-called REM counters, which are responding mainly to neutrons. The total dose equivalent is correctly assessed provided that the response is interpreted carefully by using appropriate corrections and calibration factors. For this reason measurements were carried out in a high-energy reference field at CERN, which allows one to study the response of the different detectors in a mixed radiation field under controlled conditions. In addition, the field was simulated by Monte Carlo simulations. The outcome of these studies serves on one hand as a basis for quality assurance and improves on the other hand the knowledge of the instrument’s response for future applications at the LHC.  
WPAE050 First Calibrations of Alanine and Radio-Photo-Luminescence Dosemeters to a Hadronic Radiation Environment 3097
 
  • M. Fuerstner, I. Brunner, D. Forkel-Wirth, S. Mayer, H.G. Menzel, H. Vincke
    CERN, Geneva
  • I. Floret
    Ecole d'ingénieurs de Genève, Genève
 
  Alanine and Radio-Photo-Luminescence (RPL) dosimeters are used to monitor radiation doses occurring inside the tunnels of all CERN accelerators including the Large Hadron Collider (LHC). They are placed close to radiation sensitive machine components like cables or insulation of magnet coils to predict their remaining lifetime. The dosimeters are exposed to mixed high-energy radiation fields. However, up to now both dosimeter types are calibrated to 60Co-photons only. In order to study the response of RPL and alanine dosimeters to mixed particle fields like those occurring at CERN’s accelerators, an irradiation campaign at the CERN-EC High-Energy Reference field Facility (CERF-field) was performed. Moreover, the dosimeters were first time calibrated to a proton radiation field of a constant momentum of 24 GeV/c. In addition to the experiment FLUKA Monte Carlo simulations were carried out, which provide information concerning the energy deposition and the radiation field at the dosimeter locations.  
TPAP007 LHC Collimation: Design and Results from Prototyping and Beam Tests 1078
 
  • R.W. Assmann, O. Aberle, G. Arduini, A. Bertarelli, H.-H. Braun, M. Brugger, H. Burkhardt, S. Calatroni, F. Caspers, E. Chiaveri, A. Dallocchio, B. Dehning, A. Ferrari, M. Gasior, A. Grudiev, E.B. Holzer, J.-B. Jeanneret, J.M. Jimenez, Y. Kadi, R. Losito, M. Magistris, A.M. Masi, M. Mayer, E. Métral, R. Perret, C. Rathjen, S. Redaelli, G. Robert-Demolaize, S. Roesler, M. Santana-Leitner, D. Schulte, P. Sievers, E. Tsoulou, H. Vincke, V. Vlachoudis, J. Wenninger
    CERN, Geneva
  • I. Baishev, I.L. Kurochkin
    IHEP Protvino, Protvino, Moscow Region
  • G. Spiezia
    Naples University Federico II, Science and Technology Pole, Napoli
 
  The problem of collimation and beam cleaning concerns one of the most challenging aspects of the LHC project. A collimation system must be designed, built, installed and commissioned with parameters that extend the present state-of-the-art by 2-3 orders of magnitude. Problems include robustness, cleaning efficiency, impedance and operational aspects. A strong design effort has been performed at CERN over the last two years. The system design has now been finalized for the two cleaning insertions. The adopted phased approach is described and the expected collimation performance is discussed. In parallel robust and precisely controllable collimators have been designed. Several LHC prototype collimators have been built and tested with the highest beam intensities that are presently available at CERN. The successful beam tests are presented, including beam-based setup procedures, a 2 MJ robustness test and measurements of the collimator-induced impedance. Finally, an outlook is presented on the challenges that are ahead in the coming years.  
TPPE053 Design Issues for the ILC Positron Source 3230
 
  • V. Bharadwaj, Y.K. Batygin, R. Pitthan, D.C. Schultz, J. Sheppard, H. Vincke, J.W. Wang
    SLAC, Menlo Park, California
  • J.G. Gronberg, W. Stein
    LLNL, Livermore, California
 
  Funding: Work supported by Department of Energy contract DE-AC02-76SF00515.

A positron source for the ILC can be designed using either a multi-GeV electron beam or a multi-MeV photon beam impinging on a metal target. The major issues are: the drive beam, choice of target material, the design of the target station, the capture section, the target vault, and beam transport to the damping ring. In this paper, positron source parameters for the various schemes are outlined and the advantages and disadvantages of each scheme are discussed.

 
RPPP039 Heat Deposition in Positron Sources for ILC 2574
 
  • V. Bharadwaj, R. Pitthan, J. Sheppard, H. Vincke, J.W. Wang
    SLAC, Menlo Park, California
 
  Funding: Work supported by Department of Energy contract DE-AC02-76SF00515.

In an ILC positron source, multi-GeV electrons or multi-MeV photons impinge on a metal target. In either case, the incoming beam power is hundreds of kilowatts. Various computer programs - such as FLUKA or MARS – can calculate how the incoming beam showers in the target and can track the particle showers through the positron source system. The incoming energy ends up as heat in the various positron source elements. This paper presents results from such calculations and their impact on the design of a positron source for the ILC.