A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Tomisawa, T.

Paper Title Page
RPAT043 Developments of the Calibration Tools for Beam Position Monitor at J-PARC Linac 2777
 
  • S. Sato, H. Akikawa, T. Tomisawa, A. Ueno
    JAERI/LINAC, Ibaraki-ken
  • Z. Igarashi, M. Ikegami, N. Kamikubota, S. Lee, T. Toyama
    KEK, Ibaraki
 
  In the J-PARC LINAC, there are mainly two requirements for the beam based calibration of beam position monitors (BPMs). One is that BPMs need to be calibrated with the accuracy of about a hundred micro-meters to minimize beam loss for the world highest class of proton intensity. The other is that about a hundred of BPMs need to be calibrated consistently. To achieve these requirements, the calibration tool are being developed with experiences on real beam in a MEBT line set for the DTL commissioning. Tools for simulating the beam trajectory using transport matrix (e.g. T3D) are being developed as well. The calibrated beam positions measured by BPMs are used in the simulation for tuning the beam. Implementation of the calibration tools on the same platform (e.g. SAD) with the simulation tools is important for higher usability during commissioning of whole J-PARC. In this paper, details of these developments around BPMs are to be reported.  
FPAE043 Transverse Tuning Scheme for J-PARC Linac 2750
 
  • M. Ikegami, Z. Igarashi, S. Lee
    KEK, Ibaraki
  • H. Akikawa, K. Hasegawa, Y. Kondo, T. Ohkawa
    JAERI, Ibaraki-ken
  • H. Ao, S. Sato, T. Tomisawa, A. Ueno
    JAERI/LINAC, Ibaraki-ken
 
  In a high-intensity linac, precise transverse matching is essential for beam halo mitigation. In this paper, we present the supposed transverse tuning scheme for J-PARC linac and the planned beam diagnostic layout for it. Relevantly, we briefly touch upon the tuning scenario for the arc section and the transverse halo collimator system which are located between the linac and the succeeding ring.